Skip to main content

A Transformation-Based Approach for Fuzzy Knowledge Bases Engineering

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2020)

Abstract

Fuzzy knowledge base engineering remains an important area of scientific research. The efficiency of this process can be improved due to the automated analysis of existing domain models in the form of conceptual diagrams of different types. In this paper we propose an approach for generating knowledge bases by transforming conceptual models with fuzzy factors. Resulted knowledge bases contain fuzzy rules. The proposed approach includes: a method for the automated analysis and transformation of conceptual models serialized in the XML-like formats; an extended domain-specific declarative language for describing transformation models, namely Transformation Model Representation Language (TMRL); a software module for Knowledge Base Development System (KBDS) that implements the proposed method. Our approach was used for prototyping a knowledge base for predicting degradation processes of technical systems in the petrochemical industry, in this case we developed the software module for transformation of Ishikawa diagrams that account fuzzy and uncertainty factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3), 621–645 (2006)

    Article  Google Scholar 

  2. Cretu, L.G., Florin, D.: Model-Driven Engineering of Information Systems: Principles, Techniques, and Practice. Apple Academic Press, USA (2014)

    Book  Google Scholar 

  3. Nofal, M., Fouad, K.M.: Developing web-based semantic expert systems. Int. J. Comput. Sci. 11(1), 103–110 (2014)

    Google Scholar 

  4. Kadhim, M.A., Alam, M.A., Kaur, H.: Design and implementation of intelligent agent and diagnosis domain tool for rule-based expert system. In: Proceedings of the International Conference on Machine Intelligence Research and Advancement, December 21–23, pp. 619–622. IEEE Xplore Press, Katra (2013)

    Google Scholar 

  5. Ruiz-Mezcua, B., Garcia-Crespo, A., Lopez-Cuadrado, J., Gonzalez-Carrasco, I.: An expert system development tool for non AI experts. Expert Syst. Appl. 38, 597–609 (2011)

    Article  Google Scholar 

  6. Shue, L., Chen, C., Shiue, W.: The development of an ontology-based expert system for corporate financial rating. Expert Syst. Appl. 36, 2130–2142 (2009)

    Article  Google Scholar 

  7. Canadas, J., Palma, J., Tunez, S.: InSCo-Gen: a MDD tool for web rule-based applications. In: Web Engineering, ICWE 2009. Lecture Notes in Computer Science, vol. 5648, pp. 523–526 (2009)

    Google Scholar 

  8. Yurin, A.Y., Dorodnykh, N.O., Nikolaychuk, O.A., Grishenko, M.A.: Prototyping rule-based expert systems with the aid of model transformations. J. Comput. Sci. 14(5), 680–698 (2018)

    Article  Google Scholar 

  9. Zhang, F., Ma, Z.M., Yan, L.: Representation and reasoning of fuzzy ER model with description logic. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1358–1365. IEEE Xplore Press, Hong Kong (2008)

    Google Scholar 

  10. Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models. In: CEUR Workshop Proceedings (ITAMS-2018), vol. 2221, pp. 70–75 (2018)

    Google Scholar 

  11. Ishikawa Diagram. https://en.wikipedia.org/wiki/Ishikawa_diagram. Accessed 29 Apr 2020

  12. Mens, T., Gorp, P.V.: A taxonomy of model transformations. Electron. Notes Theor. Comput. Sci. 152, 125–142 (2006)

    Article  Google Scholar 

  13. Silva, A.R.D.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

    Google Scholar 

  14. Query/View/Transformation Specification Version 1.3. http://www.omg.org/spec/QVT/1.3/. Accessed 29 Apr 2020

  15. Jouault, F., Allilaire, F., Bezivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1), 31–39 (2008)

    Article  MathSciNet  Google Scholar 

  16. Varro, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Sci. Comput. Program. 63(3), 214–234 (2007)

    Article  MathSciNet  Google Scholar 

  17. Balasubramanian, D., Narayanan, A., Buskirk, C., Karsai, G.: The graph rewriting and transformation language: GreAT. Electron. Commun. EASST 1, 1–8 (2007)

    Google Scholar 

  18. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for in-place EMF model transformations. In: Processing of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2010). Lecture Notes in Computer Science, vol. 6394, pp. 121–135 (2010)

    Google Scholar 

  19. Epsilon. http://www.eclipse.org/epsilon/. Accessed 29 Apr 2020

  20. XSL Transformations (XSLT) Version 2.0. http://www.w3.org/TR/xslt20/. Accessed 29 Apr 2020

  21. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/. Accessed 29 Apr 2020

  22. FuzzyCLIPS. https://wiki.tcl-lang.org/page/FuzzyCLIPS. Accessed 29 Apr 2020

  23. Ecore. http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html. Accessed 29 Apr 2020

  24. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison Wesley, USA (2006)

    MATH  Google Scholar 

  25. Knowledge Base Development System. http://www.kbds.knowledge-core.ru/. Accessed 29 Apr 2020

  26. Benjamin, A.: Assembly Language for Students. North Charleston, South Carolina (2016)

    Google Scholar 

  27. Dorodnyh, N.O., Nikolaychuk, O.A., Yurin, A.Y.: An automated knowledge base development approach based on transformation of Ishikawa diagrams. Vestnik komp’yuternyh i informatsionnyh tekhnologiy 4, 41–51 (2018). (in Russian)

    Article  Google Scholar 

  28. Personal Knowledge Base Designer. http://knowledge-core.ru/index.php?p=pkbd. Accessed 29 Apr 2020

  29. Yurin, A.Yu., Berman, A.F., Nikolaychuk, O.A.: Knowledge structurization and Implementation of the self-organization principle in the case of substantiation of conceptual properties for complex technical systems. In: CEUR Workshop Proceedings (ITAMS-2019), vol. 2463, pp. 93–101 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Yurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dorodnykh, N., Nikolaychuk, O., Yurin, A. (2021). A Transformation-Based Approach for Fuzzy Knowledge Bases Engineering. In: Dolinina, O., et al. Recent Research in Control Engineering and Decision Making. ICIT 2020. Studies in Systems, Decision and Control, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-65283-8_7

Download citation

Publish with us

Policies and ethics