Model-Based Interconnection of Digital and Physical Twins Using OPC UA

  • Vladimir KutscherEmail author
  • Johannes Olbort
  • Carsten Steinhauer
  • Reiner Anderl
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1216)


The bidirectional connection of physical systems with their digital representations is a research question of recent times. This work presents a model-based connection of digital and physical twins. Therefore, we propose an approach for the bidirectional coupling of the twins using a central information point with integrated information model. Furthermore, the paper outlines use cases of visualization and remote control of a machine tool via its digital twin.


Cyber-Physical Systems Digital Twin Cyber-physical twins OPC UA Companion Specifications 



This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.


  1. 1.
    Anderl, R.: Industrie 4.0 – technological approaches, use cases, and implementation. Automatisierungstechnik (2015)Google Scholar
  2. 2.
    Anderl, R., Haag, S., Schützer, K., Zancul, E.: Digital twin technology – an approach for Industrie 4.0 vertical and horizontal lifecycle integration. Information Technology (2018)Google Scholar
  3. 3.
    Schuh, G., Walendzik, P., Luckert, M., Birkmeier, M., Weber, A., Blum, M.: Keine Industrie 4.0 ohne den Digitalen Schatten. Wie Unternehmen die notwendige Datenbasis schaffen. ZWF 111, 745–748 (2016)Google Scholar
  4. 4.
    Negri, E., Fumagalli, L., Macchi, M. (eds.): A review of the roles of digital twin in CPS-based production systems. In: 27th International Conference on Flexible Automation and Intelligent Manufacturing, Modena, Italy, 27–30 June 2017. Elsevier B.V. (2017)Google Scholar
  5. 5.
    Hirsch-Kreinsen, H., Kubach, U., Stark, R., von Wichert, G., Hornung, S., Hubrecht, L., Selmeir, J., Steglich, S.: Themenfelder von Industrie 4.0. Forschungs- und Entwicklungsbedarfe zur erfolgreichen Umsetzung von Industrie 4.0 (2019)Google Scholar
  6. 6.
    Haag, S., Anderl, R.: Digital twin – proof of concept. Manufacturing Letters (2018)Google Scholar
  7. 7.
    Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. In: International Federation of Automatic Control (2018)Google Scholar
  8. 8.
    Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Hehenberger, P., Bradley, D. (eds.) Mechatronic Futures. Challenges and Solutions for Mechatronic Systems and their Designers, pp. 59–74. Springer International Publishing (2016)Google Scholar
  9. 9.
    Verein Deutscher Ingenieure e. V.: Simulation von Logistik-, Materialfluss- und Produktionssystemen. Maschinennahe Simulation. Beuth Verlag, Berlin (3633-8) (2007)Google Scholar
  10. 10.
    Boschert, S., Heinrich, C., Rosen, R.: Next generation digital twin. In: Proceedings of TMCE 2018 (2018)Google Scholar
  11. 11.
    Ashtari Talkhestani, B., Jung, T., Lindemann, B., Sahlab, N., Jazdi, N., Schloegl, W., Weyrich, M.: An architecture of an intelligent digital twin in a cyber-physical production system. Automatisierungstechnik (2019)Google Scholar
  12. 12.
    Luo, W., Hu, T., Zhu, W.: Digital twin modeling method for CNC machine tool. In: The 15th IEEE International Conference on Networking, Sensing and Control, ICNSC 2018, 27–29 March 2018, Zhuhai, China (2018)Google Scholar
  13. 13.
    Deutsches Institut für Normung: DIN 62541-1 OPC UA. Teil 1: Übersicht und Konzepte (2011)Google Scholar
  14. 14.
    OPC Foundation: OPC Unified Architecture. Interoperabilität für Industrie 4.0 und das Internet der Dinge (2016)Google Scholar
  15. 15.
    Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture, 1st edn. Springer Vieweg, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    DIN: DIN 66025-1 Programmaufbau für numerisch gesteuerte Arbeitsmaschinen. Beuth (1983)Google Scholar
  17. 17.
    Anokhin, O., Anderl, R.: Direct control of 3D models through user input to simulate the behavior of mechatronic systems. In: Karwowski, W., Trzcielinski, S., Mrugalska, B., Di Nicolantonio, M., Rossi, E. (eds.) Advances in Manufacturing, Production Management and Process Control. Advances in Intelligent Systems and Computing, vol. 793, pp. 224–230. Springer International Publishing (2019)Google Scholar
  18. 18.
    Malakuti, S., Schlake, J., Harper, E., Petersen, H.: Digital twin: an enabler for new business models. In: VDI Automation Congress (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vladimir Kutscher
    • 1
    Email author
  • Johannes Olbort
    • 1
  • Carsten Steinhauer
    • 1
  • Reiner Anderl
    • 1
  1. 1.Department of Computer Integrated Design (DiK)Technical University of DarmstadtDarmstadtGermany

Personalised recommendations