Advertisement

SoftFRAC - Matlab Library for Realization of Fractional Order Dynamic Elements

Conference paper
  • 381 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

Nowadays, a realization of non-integer (fractional) order elements on a digital platform is a widely researched problem. The theory of such dynamic components is relatively well grounded. However, many problems of implementation on a digital platform are still open. Popular methods of implementation completely fail when used in real-time control applications. A need for efficient, numerically robust and stable implementation is obvious. These types of controllers and filters can be used in areas like telemedicine, biomedical engineering, signal processing, control, and many others. In this paper, the authors present the basic level of preliminary implementation of Matlab library for a realization of fractional order dynamic elements.

Keywords

Real time computation Fractional systems Approximation Computation software SoftFRAC 

Notes

Acknowledgment

Work partially realized in the project “Development of efficient computing software for simulation and application of non-integer order systems”, financed by National Centre for Research and Development with TANGO programme.

References

  1. 1.
    Bania, P., Baranowski, J.: Laguerre polynomial approximation of fractional order linear systems. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Advances in the Theory and Applications of Non-integer Order Systems: 5th Conference on Non-integer Order Calculus and Its Applications, Cracow, Poland, pp. 171–182. Springer (2013)Google Scholar
  2. 2.
    Bania, P., Baranowski, J., Zagórowska, M.: Convergence of Laguerre impulse response approximation for non-integer order systems. Math. Prob. Eng. 2016, 13 (2016).  https://doi.org/10.1155/2016/9258437. Article ID 9258437CrossRefzbMATHGoogle Scholar
  3. 3.
    Baranowski, J.: Quadrature based approximations of non-integer order integrator on finite integration interval. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, vol. 407, pp. 11–20. Springer International Publishing (2017).  https://doi.org/10.1007/978-3-319-45474-0_2
  4. 4.
    Baranowski, J., Bauer, W., Zagórowska, M.: Stability properties of discrete time-domain oustaloup approximation. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-Integer Order Systems, Lecture Notes in Electrical Engineering, vol. 357, pp. 93–103. Springer International Publishing (2016).  https://doi.org/10.1007/978-3-319-23039-9_8
  5. 5.
    Baranowski, J., Bauer, W., Zagórowska, M., Dziwiński, T., Piątek, P.: Time-domain Oustaloup approximation. In: 2015 20th International Conference On Methods and Models in Automation and Robotics (MMAR), pp. 116–120. IEEE (2015)Google Scholar
  6. 6.
    Baranowski, J., Zagórowska, M.: Quadrature based approximations of non-integer order integrator on infinite integration interval. In: 2016 21st International Conference On Methods and Models in Automation and Robotics (MMAR) (2016)Google Scholar
  7. 7.
    Bauer, W., Baranowski, J., Dziwiński, T., Piątek, P., Zagórowska, M.: Stabilisation of magnetic levitation with a PI\(^{\lambda }\)D\(^{\mu }\) controller. In: 2015 20th International Conference On Methods and Models in Automation and Robotics (MMAR), pp. 638–642. IEEE (2015)Google Scholar
  8. 8.
    De Keyser, R., Muresan, C., Ionescu, C.: An efficient algorithm for low-order direct discrete-time implementation of fractional order transfer functions. ISA Trans. 74, 229–238 (2018)CrossRefGoogle Scholar
  9. 9.
    Kapoulea, S., Psychalinos, C., Elwakil, A.: Single active element implementation of fractional-order differentiators and integrators. AEU - Int. J. Electron. Commun. 97, 6–15 (2018)CrossRefGoogle Scholar
  10. 10.
    Kawala-Janik, A., Bauer, W., Al-Bakri, A., Haddix, C., Yuvaraj, R., Cichon, K., Podraza, W.: Implementation of low-pass fractional filtering for the purpose of analysis of electroencephalographic signals. Lect. Notes Electr. Eng. 496, 63–73 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order systems and controls: Fundamentals and applications. Advances in Industrial Control. Springer-Verlag, London (2010)CrossRefGoogle Scholar
  12. 12.
    Monteghetti, F., Matignon, D., Piot, E.: Time-local discretization of fractional and related diffusive operators using gaussian quadrature with applications. Appl. Numer. Math. (2018)Google Scholar
  13. 13.
    Mozyrska, D., Wyrwas, M.: Stability of linear systems with Caputo fractional-, variable-order difference operator of convolution type (2018)Google Scholar
  14. 14.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  15. 15.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Nonlinear Physical Science. Springer (2011)Google Scholar
  16. 16.
    Piątek, P., Zagórowska, M., Baranowski, J., Bauer, W., Dziwiński, T.: Discretisation of different non-integer order system approximations. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 429–433. IEEE (2014)Google Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Elsevier Science (1998)Google Scholar
  18. 18.
    Rydel, M., Stanisławski, R., Latawiec, K., Gałek, M.: Model order reduction of commensurate linear discrete-time fractional-order systems. IFAC-PapersOnLine 51(1), 536–541 (2018)CrossRefGoogle Scholar
  19. 19.
    Stanisławski, R., Latawiec, K.J., Gałek, M., Łukaniszyn, M.: Modeling and identification of fractional-order discrete-time laguerre-based feedback-nonlinear systems. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer-Order Systems, Lecture Notes in Electrical Engineering, vol. 320, pp. 101–112. Springer International Publishing (2015)Google Scholar
  20. 20.
    Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2, 51–62 (2011)Google Scholar
  21. 21.
    Trigeassou, J., Maamri, N., Sabatier, J., Oustaloup, A.: State variables andtransients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012).  https://doi.org/10.1016/j.camwa.2012.03.099. http://www.sciencedirect.com/science/article/pii/S0898122112003173. Advances in FDE, IIIMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Automatic Control and RoboticsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations