Global Stability of Positive Discrete-Time Standard and Fractional Nonlinear Systems with Scalar Feedbacks

  • Tadeusz Kaczorek
  • Andrzej RuszewskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The global stability of positive discrete-time standard and fractional orders nonlinear systems with scalar feedbacks is investigated. New sufficient conditions for the global stability of these classes of positive nonlinear systems are established. The effectiveness of these new stability conditions is demonstrated on simple examples of positive nonlinear discrete-time systems with scalar feedbacks.


Global stability Fractional order systems Positive systems Nonlinear systems Discrete-time systems Feedback 



This work was supported by National Science Centre in Poland under work No. 2017/27/B/ST7/02443.


  1. 1.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  2. 2.
    Borawski, K.: Modification of the stability and positivity of standard and descriptor linear electrical circuits by state feedbacks. Electr. Rev. 93(11), 176–180 (2017). Scholar
  3. 3.
    Busłowicz, M., Kaczorek, T.: Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci. 19(2), 263–269 (2009). Scholar
  4. 4.
    Grabowski, P.: Absolute stability criteria for infinite-dimensional discrete Lur’e systems with application to loaded electric distortionless RLCG -transmission line. J. Differ. Equ. Appl. 19, 304–331 (2013). Scholar
  5. 5.
    Farina, L., Rinaldi, S.: Positive Linear Systems. Theory and Applications. Wiley, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2002)CrossRefGoogle Scholar
  7. 7.
    Kaczorek, T.: Positive linear systems with different fractional orders. Bull. Pol. Acad. Sci. Techn. 58(3), 453–458 (2010). Scholar
  8. 8.
    Kaczorek, T.: Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits Syst. 58(6), 1203–1210 (2011). Scholar
  9. 9.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kaczorek, T.: Analysis of positivity and stability of discrete-time and continuous-time nonlinear systems. Comput. Probl. Electr. Eng. 5(1), 11–16 (2015)Google Scholar
  11. 11.
    Kaczorek, T.: Stability of fractional positive nonlinear systems. Arch. Control Sci. 25(4), 491–496 (2015). Scholar
  12. 12.
    Kaczorek, T.: Analysis of positivity and stability of fractional discrete-time nonlinear systems. Bull. Pol. Acad. Sci. Techn. 64(3), 491–494 (2016). Scholar
  13. 13.
    Kaczorek, T.: Superstabilization of positive linear electrical circuit by state-feedbacks. Bull. Pol. Acad. Sci. Techn. 65(5), 703–708 (2017). Scholar
  14. 14.
    Kaczorek, T.: Absolute stability of a class of fractional positive nonlinear systems. Int. J. Appl. Math. Comput. Sci. 29(1), 93–98 (2019). Scholar
  15. 15.
    Kaczorek, T.: Global stability of nonlinear feedback systems with positive linear parts. Int. J. Nonlinear Sci. Numer. Simul. 20(5), 575–579 (2019). Scholar
  16. 16.
    Kaczorek, T.: Global stability of positive standard and fractional nonlinear feedback systems. Bull. Pol. Acad. Sci. Techn. 68(2), 285–288 (2020). CrossRefGoogle Scholar
  17. 17.
    Kaczorek, T., Borawski, K.: Stability of positive nonlinear systems. In: 22nd International Conference Methods and Models in Automation and Robotics, Poland, pp. 564–569 (2017).
  18. 18.
    Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Springer, Cham (2015)CrossRefGoogle Scholar
  19. 19.
    Lyapunov, A.M.: General Problem of Stable Movement. Gostechizdat, Moscow (1963). (in Russian)Google Scholar
  20. 20.
    Leipholz, H.: Stability Theory. Academic Press, New York (1970)zbMATHGoogle Scholar
  21. 21.
    Ostalczyk, P.: Discrete Fractional Calculus. World Scientific, River Edge (2016)CrossRefGoogle Scholar
  22. 22.
    Ruszewski, A.: Stability of discrete-time fractional linear systems with delays. Arch. Control Sci. 29(3), 549–567 (2019). Scholar
  23. 23.
    Ruszewski, A.: Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems. Bull. Pol. Acad. Sci. Techn. 67(3), 509–515 (2019). Scholar
  24. 24.
    Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London (2007)zbMATHGoogle Scholar
  25. 25.
    Sajewski, Ł.: Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays. In: 22nd International Conference on Methods and Models in Automation and Robotics, Poland, pp. 482–487 (2017).
  26. 26.
    Sajewski, Ł.: Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Techn. 65(5), 709–714 (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringBialystok University of TechnologyBiałystokPoland

Personalised recommendations