Boundary Observers for Boundary Control Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The paper studies the output observation problem for a class of linear distributed parameter systems where both the plant and the observer are modelled as boundary input/output systems. The presented results provide sufficient conditions for the plant and the observer which guarantee the asymptotic output observation to hold. These conditions have the form of three linear operator equations, with one of them being a homogeneous algebraic Sylvester equation, and provide some indication for the general observer design procedure. The results partly extend and generalize the classical approach to linear observer design. The one-dimensional heat equation is considered as an example.


Boundary control systems Boundary observers 


  1. 1.
    Curtain, R., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, New York (1995)CrossRefGoogle Scholar
  2. 2.
    Demetriou, M.: Natural second-order observers for second-order distributed parameter systems. Syst. Control Lett. 51, 225–234 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Drakunov, S.V., Reyhanoglu, M.: Hierarchical sliding mode observers for distributed parameter systems. J. Vib. Control 17, 1441–1453 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Emirsajłow, Z.: Infinite-dimensional Sylvester equations: basic theory and applications to observer design. Int. J. Appl. Math. Comput. Sci. 22(2), 245–257 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Emirsajłow, Z.: Remarks on functional observers for distributed parameter systems. In: Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 27–30 August 2018Google Scholar
  6. 6.
    Emirsajłow, Z.: Output observers for linear infinite-dimensional control systems. In: Kulczycki, P., Korbicz, J., Kacprzyk, J., (eds.) Control, Robotics and Information Processing, SN Series: Studies in Systems, Decision and Control. Springer (2020, to appear)Google Scholar
  7. 7.
    Emirsajłow, Z., Townley, S.: From PDEs with boundary control to the abstract state equation with an unbounded input operator: tutorial. Eur. J. Control 7, 1–23 (2000)MathSciNetGoogle Scholar
  8. 8.
    Hidayat, Z., Babuska, R., De Schutter, B., Nunez, A.: Observers for linear distributed-parameter systems: a survey. In: Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments, Montreal, Canada, 17–18 September 2011, pp. 166–171 (2011)Google Scholar
  9. 9.
    Smyshlyaev, A., Krstic, M.: Backstepping observer for a class of parabolic PDEs. Syst. Control Lett. 54, 613–625 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Trinh, H., Fernando, T.: Functional Observers for Dynamical Systems. Springer, Berlin (2012)CrossRefGoogle Scholar
  11. 11.
    Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Birkhäuser (2009)Google Scholar
  12. 12.
    Vries, D., Keesman, K.J., Zwart, H.: Luenberger boundary observer synthesis for Sturm-Liouville systems. Int. J. Control 83, 1503–1514 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations