Advertisement

A New Fuzzy Logic Decoupling Scheme for TITO Systems

  • Paweł DworakEmail author
  • Sandip Ghosh
Conference paper
  • 86 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

In the paper fuzzy logic methods for dynamic decoupling of multi-input multi-output (MIMO) dynamical systems are analysed. A structure of the fuzzy precompensator, which may be used instead classical ideal and inverted decoupling control schemes, is presented. The proposal is illustrated by series of numerical simulations.

Keywords

Dynamic decoupling MIMO systems Fuzzy logic 

References

  1. 1.
    Arousi, F.: Predictive control algorithms for linear and nonlinear processes. Ph.D. thesis, Budapest, Hungary (2009)Google Scholar
  2. 2.
    Bańka, S., Dworak, P., Jaroszewski, K.: Design of a multivariable neural controller for control of a nonlinear MIMO plant. Int. J. Appl. Math. Comput. Sci. 24(2), 357–369 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bristol, E.H.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control AC 11, 133–134 (1966).  https://doi.org/10.1109/TAC.1966.1098266CrossRefGoogle Scholar
  4. 4.
    Chiu, Ch.-S.: A dynamic decoupling approach to robust T-S fuzzy model-based control. IEEE Trans. Fuzzy Syst. 22(5) 1088–1100 (2014).  https://doi.org/10.1109/TFUZZ.2013.2280145
  5. 5.
    Dworak, P.: Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants. Bull. Pol. Acad. Sci. 62(3), 471–479 (2014).  https://doi.org/10.2478/bpasts-2014-0050 CrossRefGoogle Scholar
  6. 6.
    Dworak, P.: A type of fuzzy T-S controller for a nonlinear MIMO dynamic plant. Elektronika ir Elektrotechnika 20(5), 8–14 (2014).  https://doi.org/10.5755/j01.eee.20.5.7091CrossRefGoogle Scholar
  7. 7.
    Dworak, P., Brasel, M.: Improving quality of regulation of a nonlinear MIMO dynamic plant. Elektronika ir Elektrotechnika 19(7), 3–6 (2013)CrossRefGoogle Scholar
  8. 8.
    Dworak, P., Goyal, J.K., Aggarwal, S., Ghosh, S.: Effective use of MPC for dynamic decoupling of MIMO systems. Elektronika ir Elektrotechnika 25(2), 3–8 (2019)CrossRefGoogle Scholar
  9. 9.
    Galindo, R.: Input/output decoupling of square linear systems by dynamic two-parameter stabilizing control. Asian J. Control 18(6), 2310–2316 (2016).  https://doi.org/10.1002/asjc.1285MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Garrido, J., Vazquez, F., Morilla, F.: An extended approach of inverted decoupling. J. Process Control 21(1), 55–68 (2011)CrossRefGoogle Scholar
  11. 11.
    Garrido, J., Vazquez, F., Morilla, F.: Centralized inverted decoupling control. Ind. Eng. Chem. Res. 52(23), 7854–7866 (2013)CrossRefGoogle Scholar
  12. 12.
    Hamdy, M., Ramadan, A.: Design of Smith predictor and fuzzy decoupling for MIMO chemical processes with time delays. Asian J. Control 19(1), 57–66 (2017).  https://doi.org/10.1002/asjc.1338MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hamdy, M., Ramadan, A., Abozalam, B.: Comparative study of different decoupling schemes for for TITO binary distillation column via PI controller. IEEE/CAA J. Autom. Sin. 5(4), 869–877 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hamdy, M., Ramadan, A., Abozalam, B.: A novel inverted fuzzy decoupling scheme for MIMO systems with disturbance: a case study of binary distillation column. J. Intell. Manuf. 29, 1859–1871 (2018).  https://doi.org/10.1007/s10845-016-1218-xCrossRefGoogle Scholar
  15. 15.
    Hariz, M.B., Bouani, F.: Synthesis and implementation of a robust fixed low-order controller for uncertain systems. Arab. J. Sci. Eng. 41(9), 3645–3654 (2016).  https://doi.org/10.1007/s13369-016-2247-7CrossRefGoogle Scholar
  16. 16.
    Khaki-Sedigh, A., Moaveni, B.: Springer. Control Configuration Selection for Multivariable Plants (2009).  https://doi.org/10.1007/978-3-642-03193-9CrossRefGoogle Scholar
  17. 17.
    Kucera, V.: Optimal decoupling controllers revisited. Control Cybern. 42(1), 139–154 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kumar, C.H., Parvatheedevi, P.: Fuzzy lead-lag controller used in control of flexible AC transmission system devices. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4(3), 1750–1758 (2015)Google Scholar
  19. 19.
    Liu, G., Wang, Z., Mei, C., Ding, Y.: A review of decoupling control based on multiple models. In: 24th Chinese Control and Decision Conference, pp. 1077–1081 (2012).  https://doi.org/10.1109/CCDC.2012.6244171
  20. 20.
    Mota Sousa, F.M., Barbosa Amara, V.M., Fonseca, R.R.: Adaptive fuzzy feedforward-feedback controller applied to level control in an experimental prototype. IFAC-PapersOnLine 52(1), 219–224 (2019)CrossRefGoogle Scholar
  21. 21.
    Oblak, S., Skrjanc, I.: Multivariable fuzzy predictive functional control of a MIMO nonlinear system. In: IEEE International Symposium on Intelligent Control, Limassol, Cyprus, pp. 1029–1034 (2005).  https://doi.org/10.1109/.2005.1467155
  22. 22.
    Park, K.H., Choi, G.H.: Necessary and sufficient conditions for the existence of decoupling controllers in the generalized plant model. J. Electr. Eng. Technol. 6, 706–712 (2011).  https://doi.org/10.5370/JEET.2011.6.5.706CrossRefGoogle Scholar
  23. 23.
    Park, K.H.: Parameterization of decoupling controllers in the generalized plant model. IEEE Trans. Automat. Contr. 57(4), 1067–1070 (2012).  https://doi.org/10.1109/TAC.2011.2173410MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Park, K.H.: A simple existence condition of one-degree-of-freedom block decoupling controllers. Automatica 51, 14–17 (2015).  https://doi.org/10.1016/j.automatica.2014.10.072MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pereira, R.D.O., Veronesi, M., Visioli, A., Normey-Rico, J.E.: Implementation and test of a new autotuning method for PID controllers of TITO processes. Control Eng. Pract. 58, 171–185 (2017).  https://doi.org/10.1016/j.conengprac.2016.10.010CrossRefGoogle Scholar
  26. 26.
    Salgado, M.E., Conley, A.: MIMO interaction measure and controller structure selection. Int. J. Control 77(4), 367–383 (2007).  https://doi.org/10.1080/0020717042000197631MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Schmitz, U., Haber, R., Arousi, F., Bars, R.: Decoupling predictive control by error dependent tuning of the weighting factors. In: Process Control Conference, pp. 131–140 (2007)Google Scholar
  28. 28.
    Vazquez, F., Morilla, F.: Tuning decentralized PI controllers for MIMO systems with decouplings. In: 15th IFAC World Congress (2002)Google Scholar
  29. 29.
    Wittenmark, B., Salgado, M.E.: Hankel-norm based interaction measure for input-output pairing. In: Proceedings of the 15th Triennial World Congress, CD-ROM (2002).  https://doi.org/10.3182/20020721-6-ES-1901.01625
  30. 30.
    Wood, R.K., Berry, M.W.: Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28(16), 1707–1710 (1973).  https://doi.org/10.1016/0009-2509(73)80025-9CrossRefGoogle Scholar
  31. 31.
    Zermani, M.A., Feki, E., Mami, A.: Self-tuning weighting factor to decoupling control for incubator system. Int. J. Inf. Technol. Control Autom. 2(3), 67–83 (2013)Google Scholar
  32. 32.
    Zhu, Z.X.F.: Structural analysis and stability conditions of decentralized control systems. Ind. Eng. Chem. Res. 35(3), 736–745 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.West Pomeranian University of Technology in SzczecinSzczecinPoland
  2. 2.Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations