Advertisement

Formation Control of Non-holonomic Mobile Robots - Tuning the Algorithm

  • Wojciech KowalczykEmail author
  • Krzysztof Kozłowski
Conference paper
  • 87 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

This paper presents the tuning methodology for the system of multiple two-wheeled mobile robots moving in formation. The procedure was applied to the trajectory tracking algorithm combined with collision avoidance based on the Artificial Potential Functions (APFs). Robots mimic motion of the virtual leader with a certain displacement avoiding collisions with each other and with circular shaped, static obstacles present in the environment. The results obtained during the computations are visualized to enable evaluation of the sensitivity of the closed-loop system to parameter selection. Then, the results of the simulation for the set of best parameters are discussed.

Keywords

Robot formation Nonholonomic robot Tuning algorithm Path following Artificial Potential Function 

Notes

Acknowledgements

This work is supported by statutory grant 09/93/DSPB/0811.

References

  1. 1.
    Do, D.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Sys. Technol. 16(3), 527–538 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)CrossRefGoogle Scholar
  3. 3.
    Kowalczyk, W., Michałek, M., Kozłowski, K.: Trajectory Tracking control with obstacle avoidance capability for unicycle-like mobile robot. Bull. Pol. Acad. Sci. Tech. Sci. 60(3), 537–546 (2012)Google Scholar
  4. 4.
    Kowalczyk, W., Kozłowski, K.: Leader-Follower control and collision avoidance for the formation of differentially-driven mobile robots. In: 23rd International Conference on Methods and Models in Automation and Robotics (MMAR 2018), pp. 27-30, Miedzyzdroje, Poland, August 2018Google Scholar
  5. 5.
    Kowalczyk, W., Kozłowski, K.: Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots. Bull. Pol. Acad. Sci. Tech. Sci. 67(5), 915–924 (2019)Google Scholar
  6. 6.
    Kowalczyk, W., Kozłowski, K., Tar, J.: Trajectory tracking for multiple unicycles in the environment with obstacles. In: 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010), pp. 451–456, Budapest (2010).  https://doi.org/10.1109/RAAD.2010.5524544
  7. 7.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1977)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32(4), 569–576 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Loria, A., Dasdemir, J., Alvarez Jarquin, N.: Leader–follower formation and tracking control of mobile robots along straight paths. IEEE Trans. Control Syst. Technol. 24(2), 727–732 (2016).  https://doi.org/10.1109/TCST.2015.2437328CrossRefGoogle Scholar
  11. 11.
    Loria, A., Panteley, E., Teel, A.: Relaxed persistency of excitation for uniform asymptotic stability. IEEE Trans. Autom. Control 46(12), 1363–1368 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mastellone, S., Stipanovic, D., Spong, M.: Formation Control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27, 107–126 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Poznań University of TechnologyPoznańPoland

Personalised recommendations