Advertisement

Comparison of Non-integer PID, PD and PI Controllers for DC Motor

Conference paper
  • 375 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

In this work we will present a control method for DC motors based on non-integer PID, PD and PI controllers. The original element in this paper consists of a comparative analysis of various controllers stabilizing the position of the motor shaft To design all controller types we are using global optimization method simulated annealing.

Keywords

DC motor Noninteger PID Noninteger PD Noninteger PI Time domain Oustaloup 

References

  1. 1.
    Åström, K.J.: Model uncertainty and robust control. In: Lecture Notes on Iterative Identification and Control Design, pp. 63–100 (2000)Google Scholar
  2. 2.
    Baranowski, J.: Projektowanie obserwatora dla serwomechanizmu prądu stałego. In: Materiały VIII Międzynarodowych Warsztatów Doktoranckich OWD 2006, vol. 2, pp. 373–378 (2006)Google Scholar
  3. 3.
    Baranowski, J., Długosz, M., Ganobis, M., Skruch, P., Mitkowski, W.: Applications of mathematics in selected control and decision processes. Matematyka Stosowana: pismo Polskiego Towarzystwa Matematycznego 12/53(spec. issue), 65–90 (2011)Google Scholar
  4. 4.
    Baranowski, J., Długosz, M., Mitkowski, W.: Remarks about DC motor control. Arch. Control Sci. 18(LIV)(3), 289–322 (2008)Google Scholar
  5. 5.
    Baranowski, J., Długosz, M., Mitkowski, W.: Nonlinear observer based control of DC servo. In: Materiały XXXII Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów IC-SPETO, Ustroń, pp. 115–116 (2009). Extended version on CDGoogle Scholar
  6. 6.
    Bauer, W.: Implementation of Non-integer PI\(^\lambda \)D\(^\mu \) controller for the ATmega328P Micro-controller. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 118–121 (2016)Google Scholar
  7. 7.
    Bauer, W., Baranowski, J., Dziwiński, T., Piątek, P., Zagórowska, M.: Stabilisation of magnetic levitation with a pi\(^{\lambda }\)d\(^{\mu }\) controller. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 638–642 (2015)Google Scholar
  8. 8.
    Bauer, W., Rydel, M.: Application of reduced models of non-integer order integrator to the realization PI\(^\lambda \)D controller. In: 2016 39th International Conference on Telecommunications and Signal Processing, pp. 611–614 (2016)Google Scholar
  9. 9.
    Długosz, M., Lerch, T.: Komputerowa identyfikacja parametrów silnika prądu stałego. Przegląd Elektrotechniczny (2010)Google Scholar
  10. 10.
    Długosz, M., Mitkowski, W.: Adaptive LQR controller for angular velocity stabilisation in series DC motor. In: XXXI IC-SPETO-2008 (2008)Google Scholar
  11. 11.
    Dziwiński, T., Bauer, W., Baranowski, J., Piątek, P., Zagórowska, M.: Robust non-integer order controller for air heater. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 434–438 (2014)Google Scholar
  12. 12.
    Mitkowski, W., Baranowski, J.: Observer design for series dc motor – multi output approach. In: Materiały XXX Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów IC-SPETO, Ustroń, pp. 135–136 (2007). Extended version on CDGoogle Scholar
  13. 13.
    Mitkowski, W., Zagórowska, M., Bauer, W.: Comparative analysis of DC motor control system. In: Propulsion Systems, Mechatronics and Communication. Applied Mechanics and Materials, vol. 817, pp. 111–121. Trans Tech Publications Ltd. (2016).  https://doi.org/10.4028/www.scientific.net/AMM.817.111
  14. 14.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  15. 15.
    Paszek, S., Berhausen, S., Boboń, A., Majka, Ł., Nocoń, A., Pasko, M., Pruski, P., Kraszewski, T., Szuster, D.: Estymacja parametrów dynamicznych generatorów synchronicznych. Prace Naukowe Politechniki Śląskiej. Elektryka 1, 105–108 (2015)Google Scholar
  16. 16.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Nonlinear Physical Science. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, vol. 198. Elsevier Science, Amsterdam (1998)Google Scholar
  18. 18.
    Sieklucki, G., Bisztyga, B., Zdrojewski, A., Orzechowski, T., Sykulski, R.: Modele i Zasady Sterowania Napędami Elektrycznymi. Wydawnictwo AGH (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations