Advertisement

Fractional-Order Linear System Transformation to the System Described by a Classical Equation

Conference paper
  • 369 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

In the paper, a method of “intigeration" of a linear time-invariant continuous or discrete-time system described by fractional-order differential/difference equations is proposed. The word intigeration means a procedure of connecting in series to the fractional plant a fractional element called further an “intigerator" such that the resulting two block system is described by the classical integer order differential/difference equation. The intigerator synthesis method is given. The stability conditions of the integer system are given. The proposed procedure enables to use classical methods of PID control tuning. It may also be used to tune the variable-, fractional – order PID controller.

Keywords

Fractional calculus Fractional-order transfer function Linear fractional-order continuous system Linear fractional-order discrete system PID control 

Notes

Acknowledgments

The work was supported by funds of the Polish National Science Center granted on the basis of decision DEC-2016/23/B/ST7/03686.

References

  1. 1.
    Azarmi, R., Tavakoli-Kakhiki, M., Sedigh, A.K., Fatehi, A.: Robust Fractional Order PI Controller Tuning Based on Bode’s Ideal Transfer Function. IFAC-PaperOnLine 49(9), 158–163 (2016)CrossRefGoogle Scholar
  2. 2.
    Åström, K.J.: PID controllers: theory, design and tuning. In Instrument Society of America. (1995) https://doi.org/1556175167
  3. 3.
    Barbosa, R.S., Silva, M.F., Machado, J.A.: Tuning and Application of Integer and Fractional Order PID Controllers, Springer Science+Business Media B.V. pp.245 - 255 (2009)Google Scholar
  4. 4.
    Chen, YangQuan, Vinagre, B.M., Podlubny, I.: Using Continued Fraction Expansion to Discretize Fractional Order Derivatives. Nonlinear Dynamics, Special Issue on Fractional Derivatives and Their Applications, pp. 1 - 18 (2003)Google Scholar
  5. 5.
    Das, S., Saha, S., Das, S., Gupta, A.: On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes. ISA Transactions 50(3), 376–388 (2011).  https://doi.org/10.1016/J.ISATRA.2011.02.003CrossRefGoogle Scholar
  6. 6.
    Dastranj, M.R., Rouhani, M., Hajipoor, A.: Design of Optimal Fractional Order PID Controller Using PSO Algorithm. International Journal of Computer Theory and Engineering. (2012).  https://doi.org/10.7763/ijcte.2012.v4.499CrossRefGoogle Scholar
  7. 7.
    Elkwakil, A.S.: Fractional-order circuits and systems: an emerging disciplinary research area. IEEE Circuits System Magazine 10(4), 40–50 (2010)CrossRefGoogle Scholar
  8. 8.
    Gligor, A., Dulǎu, T. M.: Fractional Order Controllers Versus Integer Order Controllers. Procedia Engineering 181, 538–545 (2017).  https://doi.org/10.1016/j.proeng.2017.02.431
  9. 9.
    Jakubowska, A., Walczak, J.: Electrical Realizations of Fractional-Order Elements: I Synthesis of the Arbitrary Order Elements. Poznan University of Technology Academic Journals 85, 137–148 (2016)Google Scholar
  10. 10.
    Kaczorek, T., Rogowski K.: Fractional linear systems and electrical circuits, Studies in Systems, Decision and Control, Springer, Cham, vol. 13 (2015).  https://doi.org/10.1007/978-3-319-11361-6
  11. 11.
    Kai-Xin, H., Ke-Qin Z.: Mechanical Analogies of Fractional Elements, Chinese Physics Letters 26(10),  https://doi.org/10.1088/0256-307X/26/10/108301
  12. 12.
    Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations 204 (2006). https://doi.org/10.1016/S0304-0208(06)X8001-5
  13. 13.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993)zbMATHGoogle Scholar
  14. 14.
    Oldam , K. B., SpanierJ.: The Fractional Calculus: Theory and Applications of Differential and Integration of Arbitrary Order, Dver Publications, (1995)Google Scholar
  15. 15.
    Ostalczyk, P.: Discrete Fractional Calculus. Some applications in control and image processing, World Scientific Publishing Co Pte Ltd., Series in Computer Vision - Vol 4, Singapore (2016)Google Scholar
  16. 16.
    Oustaloup, A., La dérivation non entière: théorie, synthèse et applications, Traité des Nouvelles Technologies séroe automatique, Hermes, Paris (1995)Google Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)zbMATHGoogle Scholar
  18. 18.
    Rafik, F., Gualous, H., Gallay, Y.: Frequency, thermal and voltage supercapacitor characterisation and modelling. Journal of Power Sources 165, 928–934 (2007)CrossRefGoogle Scholar
  19. 19.
    Modeling of coils using fractional derivatives: Schafer, J., Kruger. K. Journal of Magnetism and Magnetic Materials 307, 91–98 (2006)CrossRefGoogle Scholar
  20. 20.
    Sheng, H., Chen, Y.Q., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing. Springer-Verlag, Singapore, Techniques and Applications (2012)CrossRefGoogle Scholar
  21. 21.
    Valerio, D., da Costa, J.: An Introduction to Fractional Control. The Institution of Engineering and Technology, London (2013)zbMATHGoogle Scholar
  22. 22.
    Vinagr, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory. Fractional Calculus and Applied Analysis, pp. 1-18 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Lodz University of TechnologyLodzPoland

Personalised recommendations