Advertisement

On Stabilization of Linear Descriptor Control Systems with Multi-order Fractional Difference of the Caputo-Type

  • Ewa PawluszewiczEmail author
Conference paper
  • 95 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

The descriptor linear control systems described by the Caputo-type h-difference multi-order fractional operator are considered. Problems of stability and stabilizability for these class of systems are discussed. Conditions for stability and stabilizability of given system are discussed.

Keywords

Fractional control system Caputo-type h-difference fractional operator Descriptor system Stability Stabilization 

Notes

Acknowledgments

The work has been carried out in the framework of Bialystok University Technology grant No WZ/WM/1/2019 and financed from the funds for science by the Polish Ministry of Science and Higher Education.

References

  1. 1.
    Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)zbMATHGoogle Scholar
  2. 2.
    Bandyopadhyay, B., Kamal, S.: Stabilization and control of fractional order systems: a sliding mode approach. In: Lecture Notes in Electrical Engineering, vol. 317, pp. 55–90, Springer (2015)Google Scholar
  3. 3.
    Campbell, S.L.: Singular Systems of Differential Equations. Research Notes in Mathematics. Pitman Publishing, San Francisco (1980)Google Scholar
  4. 4.
    Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Darouach, M., Boutat-Baddas, L.: Observers for a class of nonlinear singular systems. IEEE Trans. Autom. Control 53(11), 2627–2633 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kaczorek, T.: Driazin inverse matrix method for fractional descriptor discrete-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 395–399 (2016)Google Scholar
  7. 7.
    Kaczorek, T.: Decentralized stabilization of fractional positive descriptor continuous-time linear systems. Int. J. Appl. Math. Comput. 28(1), 135–140 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mozyrska, D., Girejko, E., Wyrwas, M.: Comparison of \(h\)-difference fractional operators. In: Lecture Notes in Electrical Engineering, vol. 257, pp. 191–197. Springer (2013)Google Scholar
  9. 9.
    Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisatin. Int. J. Syst. Sci. 48(4), 788–794 (2017)CrossRefGoogle Scholar
  10. 10.
    Mozyrska, D., Wyrwas, M., Pawluszewicz, E.: Stabilization of linear multi-parameter fractional difference control systems. In: International Conference on Methods and Models in Automation and Robotics MMAR 2015, Poland, pp. 315–319 (2015)Google Scholar
  11. 11.
    Mozyrska, D., Wyrwas, M.: Stability of discrete fractional linear systems with positive orders. In: Preprints of the 20th World Congress of the International Federation of Automatic Control, Toulouse, France (2017)Google Scholar
  12. 12.
    Mozyrska, D., Wyrwas, M.: The \(\cal{Z}\)-transform method and delta-type fractional difference operators. Discrete Dyn. Nat. Soc. (2015). Article ID 852734Google Scholar
  13. 13.
    Mozyrska, D., Wyrwas, M.: Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Mathe. Methods Appl. Sci. 40(11), 4080–4091 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pawluszewicz, E.: Perfect observers for fractional discrete-time linear systems. Kybernetika 52(6), 914–928 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Podlubny, I.: Fractional Differential Systems. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  16. 16.
    Sajewski, L.: Stabilization of positive descriptor discrete-time linear system with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Tech. Sci. 65(5), 709–714 (2017)Google Scholar
  17. 17.
    Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci. 371(1990) (2013). Article Number: 20120146Google Scholar
  18. 18.
    Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear \(h\)-difference systems with \(n\) fractional orders. Kybernetika 51(1), 112–136 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhang, H., Wu, D., Cao, J., Zhang, H.: Stability Analysis for fractional-order linear singular delay differential systems. Discrete Dyn. Nat. Soc. (2014). Article ID 850279Google Scholar
  20. 20.
    Zhang, L.: A chacterization of the Drazin inverse. Linear Algebra Appl. 335, 183–188 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bialystok University of TechnologyBialystokPoland

Personalised recommendations