Advertisement

On a Solution of an Optimal Control Problem for a Linear Fractional-Order System

Conference paper
  • 389 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

We consider an optimal control problem for a dynamical system described by a linear differential equation with the Caputo fractional derivative of an order \(\alpha \in (0, 1)\). A cost functional to be minimized evaluates a deviation of a system’s terminal state from a given target point. In order to construct a solution, we turn from the considered problem to an auxiliary optimal control problem for a first-order linear system with concentrated delays, which approximates the original system and, after that, we reduce this auxiliary problem to an optimal control problem for an ordinary differential system. Moreover, on this basis, we propose a feedback scheme of optimal control of the original system. The efficiency of the approach is illustrated by an example, and the results of numerical simulations are presented.

Keywords

Optimal control problem Linear system Caputo fractional derivative Approximation Feedback control Numerical method 

References

  1. 1.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14574-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Gomoyunov, M.I.: Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Frac. Calc. Appl. Anal. 21(5), 1238–1261 (2018).  https://doi.org/10.1515/fca-2018-0066MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gomoyunov, M.I.: Approximation of fractional order conflict-controlled systems. Progr. Fract. Differ. Appl. 5(2), 143–155 (2019).  https://doi.org/10.18576/PFDA/050205CrossRefGoogle Scholar
  4. 4.
    Gomoyunov, M.I.: Solution to a zero-sum differential game with fractional dynamics via approximations. Dyn. Games Appl. 1–27 (2019).  https://doi.org/10.1007/s13235-019-00320-4
  5. 5.
    Gomoyunov, M.I., Lukoyanov, N.Yu.: Guarantee optimization in functional-differential systems with a control aftereffect. J. Appl. Math. Mech. 76(4), 369–377 (2012).  https://doi.org/10.1016/j.jappmathmech.2012.09.002
  6. 6.
    Idczak, D., Walczak, S.: On a linear-quadratic problem with Caputo derivative. Opuscula Math. 36(1), 49–68 (2016).  https://doi.org/10.7494/OpMath.2016.36.l.49MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kamocki, R., Majewski, M.: Fractional linear control systems with Caputo derivative and their optimization. Optim. Control Appl. Meth. 36(6), 953–967 (2015).  https://doi.org/10.1002/oca.2150MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kaczorek, T.: Minimum energy control of fractional positive electrical circuits with bounded inputs. Circuits Syst. Signal Process. 35(6), 1815–1829 (2016).  https://doi.org/10.1007/s00034-015-0181-7MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Krasovskii, N.N., Kotelnikova, A.N.: Stochastic guide for a time-delay object in a positional differential game. Proc. Steklov Inst. Math. 277(suppl. 1), 145–151 (2012).  https://doi.org/10.1134/S0081543812050148MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krasovskii, N.N., Krasovskii, A.N.: Control Under Lack of Information. Birkhäuser, Berlin (1995).  https://doi.org/10.1007/978-1-4612-2568-3CrossRefzbMATHGoogle Scholar
  11. 11.
    Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)CrossRefGoogle Scholar
  12. 12.
    Kubyshkin, V.A., Postnov, S.S.: Optimal control problem for a linear stationary fractional order system in the form of a problem of moments: problem setting and a study. Autom. Remote Control. 75(5), 805–817 (2014).  https://doi.org/10.1134/S0005117914050014MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lukoyanov, N.Yu., Gomoyunov, M.I.: Differential games on minmax of the positional quality index. Dyn. Games Appl. 9(3), 780–799 (2019).  https://doi.org/10.1007/s13235-018-0281-7
  14. 14.
    Lukoyanov, N.Yu., Reshetova, T.N.: Problems of conflict control of high dimensionality functional systems. J. Appl. Math. Mech. 62(4), 545–554 (1998).  https://doi.org/10.1016/S0021-8928(98)00071-9
  15. 15.
    Matychyn, I., Onyshchenko, V.: Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21(1), 134–150 (2018).  https://doi.org/10.1515/fca-2018-0009MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)zbMATHGoogle Scholar
  17. 17.
    Surkov, P.G.: Dynamic right-hand side reconstruction problem for a system of fractional differential equations. Differ. Equ. 55(6), 849–858 (2019).  https://doi.org/10.1134/S0012266119060120MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations