Advertisement

Application of Multi-layered Thresholding Based on Stack of Regions for Unevenly Illuminated Industrial Images

Conference paper
  • 375 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

Binarization of unevenly illuminated and natural images usually cannot be conducted using typical global thresholding methods. Due to changes of the local contrast and potential presence of some other distortions the application of more computationally demanding adaptive methods is necessary. Nevertheless, to find balance between the global and adaptive methods, some relatively fast region based approaches might be considered providing satisfactory results. Since typical issues for unevenly illuminated industrial images are quite similar to some distortions which may be found in degraded document images, in view of lack of industrial image databases, all numerical experiments have been conducted using recently developed challenging Bickley Diary dataset. Results of experiments, verified for sample unevenly illuminated industrial images containing text information, are promising and confirm usefulness of the proposed multi-layered approach based on the use of stack of regions.

Keywords

Image binarization Adaptive thresholding Unevenly illuminated images Document images 

References

  1. 1.
    Bernsen, J.: Dynamic thresholding of grey-level images. In: Proceedings 8th Interenational Conference on Pattern Recognition (ICPR), pp. 1251–1255 (1986)Google Scholar
  2. 2.
    Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graph. Tools 12(2), 13–21 (2007).  https://doi.org/10.1080/2151237X.2007.10129236CrossRefGoogle Scholar
  3. 3.
    Chaki, N., Shaikh, S.H., Saeed, K.: Exploring image binarization techniques. In: Studies in Computational Intelligence, vol. 560. Springer, New Delhi (2014).  https://doi.org/10.1007/978-81-322-1907-1
  4. 4.
    Deng, F., Wu, Z., Lu, Z., Brown, M.S.: BinarizationShop: a user assisted software suite for converting old documents to black-and-white. In: Proceedings Annual Joint Conference on Digital Libraries, pp. 255–258 (2010)Google Scholar
  5. 5.
    Feng, M.L., Tan, Y.P.: Adaptive binarization method for document image analysis. In: Proceedings 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 339–342 (2004).  https://doi.org/10.1109/ICME.2004.1394198
  6. 6.
    Kapur, J., Sahoo, P., Wong, A.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985).  https://doi.org/10.1016/0734-189X(85)90125-2CrossRefGoogle Scholar
  7. 7.
    Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired binarization methods for ancient documents. In: Document Recognition and Retrieval XVI, vol. 7247, pp. 7247–7247–9 (2009).  https://doi.org/10.1117/12.805827
  8. 8.
    Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recogn. 19(1), 41–47 (1986).  https://doi.org/10.1016/0031-3203(86)90030-0CrossRefGoogle Scholar
  9. 9.
    Krupiński, R., Lech, P., Tecław, M., Okarma, K.: Binarization of degraded document images with Generalized Gaussian Distribution. In: Rodrigues, J.M.F.E. (ed.) Computational Science – ICCS 2019. Lecture Notes in Computer Science, vol. 11540, pp. 177–190. Springer (2019).  https://doi.org/10.1007/978-3-030-22750-0_14
  10. 10.
    Kulyukin, V., Kutiyanawala, A., Zaman, T.: Eyes-free barcode detection on smartphones with Niblack’s binarization and Support Vector Machines. In: Proceedings 16th International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV 2012), vol. 1, pp. 284–290. CSREA Press (2012)Google Scholar
  11. 11.
    Lam, O., Dayoub, F., Schulz, R., Corke, P.: Text recognition approaches for indoor robotics: a comparison. In: Proceedings of Australasian Conference on Robotics and Automation (ACRA), Melbourne, Australia (2014). Paper no. 138Google Scholar
  12. 12.
    Lech, P., Okarma, K.: Optimization of the fast image binarization method based on the Monte Carlo approach. Elektronika Ir Elektrotechnika 20(4), 63–66 (2014).  https://doi.org/10.5755/j01.eee.20.4.6887CrossRefGoogle Scholar
  13. 13.
    Lech, P., Okarma, K., Wojnar, D.: Binarization of document images using the modified local-global Otsu and Kapur algorithms. Przegląd Elektrotechniczny 91(1), 71–74 (2015).  https://doi.org/10.15199/48.2015.02.1CrossRefGoogle Scholar
  14. 14.
    Michalak, H., Okarma, K.: Region based adaptive binarization for optical character recognition purposes. In: Proceedings of International Interdisciplinary PhD Workshop (IIPhDW), pp. 361–366. Świnoujście, Poland (2018).  https://doi.org/10.1109/IIPHDW.2018.8388391
  15. 15.
    Michalak, H., Okarma, K.: Adaptive image binarization based on multi-layered stack of regions. In: Vento, M., Percannella, G. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 11679, pp. 281–293. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-29891-3_25
  16. 16.
    Michalak, H., Okarma, K.: Fast binarization of unevenly illuminated document images based on background estimation for optical character recognition purposes. J. Univ. Comput. Sci. 25(6), 627–646 (2019).  https://doi.org/10.3217/jucs-025-06-0627CrossRefGoogle Scholar
  17. 17.
    Moghaddam, R.F., Cheriet, M.: AdOtsu: an adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recogn. 45(6), 2419–2431 (2012).  https://doi.org/10.1016/j.patcog.2011.12.013CrossRefGoogle Scholar
  18. 18.
    Niblack, W.: An Introduction to Digital Image Processing. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  19. 19.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: Performance evaluation methodology for historical document image binarization. IEEE Trans. Image Process. 22(2), 595–609 (2013).  https://doi.org/10.1109/TIP.2012.2219550MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).  https://doi.org/10.1109/TSMC.1979.4310076CrossRefGoogle Scholar
  21. 21.
    Pratikakis, I., Zagoris, K., Kaddas, P., Gatos, B.: ICFHR 2018 Competition on Handwritten Document Image Binarization (H-DIBCO 2018). In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 489–493 (2018).  https://doi.org/10.1109/ICFHR-2018.2018.00091
  22. 22.
    Samorodova, O.A., Samorodov, A.V.: Fast implementation of the Niblack binarization algorithm for microscope image segmentation. Pattern Recogn. Image Anal. 26(3), 548–551 (2016).  https://doi.org/10.1134/S1054661816030020CrossRefGoogle Scholar
  23. 23.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000).  https://doi.org/10.1016/S0031-3203(99)00055-2CrossRefGoogle Scholar
  24. 24.
    Saxena, L.P.: Niblack’s binarization method and its modifications to real-time applications: a review. Artif. Intell. Rev. 51(4), 673–705 (2019).  https://doi.org/10.1007/s10462-017-9574-2CrossRefGoogle Scholar
  25. 25.
    Tensmeyer, C., Martinez, T.: Document image binarization with fully convolutional neural networks. In: 14th IAPR International Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan, 9–15 November 2017, pp. 99–104 (2017).  https://doi.org/10.1109/ICDAR.2017.25
  26. 26.
    Wolf, C., Jolion, J.M.: Extraction and recognition of artificial text in multimedia documents. Formal Pattern Anal. Appl. 6(4), 309–326 (2004).  https://doi.org/10.1007/s10044-003-0197-7MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringWest Pomeranian University of Technology in SzczecinSzczecinPoland

Personalised recommendations