Grey Wolf Optimizer in Design Process of Stable Neural Controller – Theoretical Background and Experiment

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


This article deals with an adaptive neural controller applied for a nonlinear plant with time-varying parameters. The structure of the controller is based on Radial Basis Function Neural Network. The output part of the controller (weights) is modified in several iterations of the control structure. In this application, the coefficients of the Gaussian functions are constant (it means the centers and width). The relevance of proper selection of those values is presented in tests performed for a real plant (an electrical drive). Moreover, for optimization of this part of the controller the metaheuristic – Grey Wolf Optimizer – algorithm was applied. The centers were selected in a clustering process. The synthesis of the controller includes stability analysis (using the Lyapunov method). The content of this article can be divided into two basic parts, the first shows theoretical considerations and the second is related to the experimental tests of the analyzed neural controller (executed in a laboratory, for the drive with 0.5 kW nominal power, using dSPACE card).


Grey Wolf Optimizer Radial Basis Function Neural Network Clustering Adaptive control Electric drive 


  1. 1.
    Zhang, C., Yan, H.-S.: Identification and adaptive multi-dimensional Taylor network control of single-input single-output non-linear uncertain time-varying systems with noise disturbances. IET Control Theory Appl. 13(6), 841–853 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    You, F., Chen, N., Zhu, Z., Cheng, S., Yang, H., Jia, M.: Adaptive fuzzy control for nonlinear state constrained systems with input delay and unknown control coefficients. IEEE Access 7, 53718–53730 (2019)CrossRefGoogle Scholar
  3. 3.
    Mazenc, F., Niculescu, S.-I., Bekaik, M.: Stabilization of time-varying nonlinear systems with distributed input delay by feedback of plant’s state. IEEE Trans. Autom. Control 58(1), 264–269 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Louarroudi, E., Pintelon, R., Lataire, J.: Nonparametric tracking of the time-varying dynamics of weakly nonlinear periodically time-varying systems using periodic inputs. IEEE Trans. Instrum. Meas. 61(5), 1384–1394 (2012)CrossRefGoogle Scholar
  5. 5.
    Qi, W., Zong, G., Karimi, H.R.: Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans. Autom. Control 65(1), 361–368 (2020)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hekimoğlu, B.: Optimal tuning of fractional order PID controller for dc motor speed control via chaotic atom search optimization algorithm. IEEE Access 7, 38100–38114 (2019)CrossRefGoogle Scholar
  7. 7.
    Yu, H., Xie, T., Paszczynski, S., Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Industr. Electron. 58(12), 5438–5450 (2011)CrossRefGoogle Scholar
  8. 8.
    Wang, H., Liu, P.X., Li, S., Wang, D.: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    San, P.P., Ren, B., Ge, S.S., Lee, T.H., Liu, J.-K.: Adaptive neural network control of hard disk drives with hysteresis friction nonlinearity. IEEE Trans. Control Syst. Technol. 19(2), 351–358 (2011)CrossRefGoogle Scholar
  10. 10.
    Pajchrowski, T., Zawirski, K., Nowopolski, K.: Neural speed controller trained online by means of modified RPROP algorithm. IEEE Trans. Industr. Inf. 11(2), 560–568 (2015)CrossRefGoogle Scholar
  11. 11.
    Pajchrowski, T.: Porównanie struktur regulacyjnych dla napędu bezpośredniego z silnikiem PMSM ze zmiennym momentem bezwładności i obciążenia. Przegląd Elektrotechniczny 94(5), 133–138 (2018)Google Scholar
  12. 12.
    Kaminski, M., Orlowska-Kowalska, T.: Adaptive neural speed controllers applied for a drive system with an elastic mechanical coupling - a comparative study. Eng. Appl. Artif. Intell. 45, 152–167 (2015)CrossRefGoogle Scholar
  13. 13.
    Yang, X., Li, Y., Sun, Y., Long, T., Sarkar, T.K.: Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation. IEEE Trans. Antennas Propag. 66(6), 3097–3107 (2018)CrossRefGoogle Scholar
  14. 14.
    Raitoharju, J., Kiranyaz, S., Gabbouj, M.: Training radial basis function neural networks for classification via class-specific clustering. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2458–2471 (2016)CrossRefGoogle Scholar
  15. 15.
    Calvini, M., Carpita, M., Formentini, A., Marchesoni, M.: PSO-based self-commissioning of electrical motor drives. IEEE Trans. Industr. Electron. 62(2), 768–776 (2015)CrossRefGoogle Scholar
  16. 16.
    Sun, X., Hu, C., Lei, G., Guo, Y., Zhu, J.: State feedback control for a PM hub motor based on gray wolf optimization algorithm. IEEE Trans. Power Electron. 35(1), 1136–1146 (2019)CrossRefGoogle Scholar
  17. 17.
    Premkumar, K., Manikandan, B.V.: Speed control of brushless DC motor using BAT algorithm optimized adaptive neuro-fuzzy inference system. Appl. Soft Comput. 32, 403–419 (2015)CrossRefGoogle Scholar
  18. 18.
    Szczepanski, R., Tarczewski, T., Grzesiak, L.M.: Adaptive state feedback speed controller for PMSM based on artificial bee colony algorithm. Appl. Soft Comput. 83, 1–12 (2019)CrossRefGoogle Scholar
  19. 19.
    Ma, H., Wang, T., Li, Y., Meng, Y.: A time picking method for microseismic data based on LLE and improved PSO clustering algorithm. IEEE Geosci. Remote Sens. Lett. 15(11), 1677–1681 (2018)CrossRefGoogle Scholar
  20. 20.
    Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974 (2010)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Hu, C., Zhu, Y., He, S., Yang, K., Zhang, M.: Neural network learning adaptive robust control of an industrial linear motor-driven stage with disturbance rejection ability. IEEE Trans. Industr. Inf. 13(5), 2172–2183 (2017)CrossRefGoogle Scholar
  22. 22.
    Gao, J., Proctor, A., Bradley, C.: Adaptive neural network visual servo control for dynamic positioning of underwater vehicles. Neurocomputing 167, 604–613 (2015)CrossRefGoogle Scholar
  23. 23.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  24. 24.
    Orlowska-Kowalska, T., Szabat, K., Jaszczak, K.: The influence of parameters and structure of PI-type fuzzy-logic controller on DC drive system dynamics. Fuzzy Sets Syst. 131(2), 251–264 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Wroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations