On Feasibility of Tuning and Testing Control Loops by Nonstandard Inputs

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


A simple methodology for tuning and testing PID loops by means of nonstandard inputs such as a slowly varying signal, a sequence of small steps, etc., is presented. A discrete 2nd order transfer function with delay is assumed both as a model of the plant and of the closed-loop system. After smoothing the output data, the models are identified by least-squares enabling reconstruction of corresponding step responses. Given the plant response, PID controller can be tuned in standard ways. Overshoot and settling time of the closed-loop response indicate whether the system satisfies specification.


Identification Least-squares Step response PID tuning 



This project is financed by the Minister of Science and Higher Education of the Republic of Poland within the “Regional Initiative of Excellence” program for years 2019–2022. Project number 027/RID/2018/19, amount granted 11 999 900 PLN.


  1. 1.
    Bielińska, E.: Klasyczne metody identyfikacji odpowiedzi skokowej (Classical methods of step response identification). In: Kasprzyk, J. (ed.) Identyfikacja procesów: praca zbiorowa (Process identification: joint publication), pp. 51–62. Wyd. PŚl, Gliwice (1997)Google Scholar
  2. 2.
    Byrski, W.: A new method of multi-inertial systems identification by the Strejc model. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation, KKA 2017, Advances in Intelligent Systems and Computing, vol. 577, pp. 536–549. Springer, Cham (2017)Google Scholar
  3. 3.
    Jacheć, M.: Astor. Poradnik automatyka – Teoria sterowania w praktyce – Identyfikacja obiektu (Control engineer handbook – Control theory in practice – Plant identification) (2016)., Accessed 03 Jan 2020
  4. 4.
    Królikowski, A., Horla, D., Ziętkiewicz, J.: Identyfikacja obiektów sterowania: metody dyskretne parametryczne (Identification of control plants: parametric discrete methods). Wyd. PP, Poznań (2017)Google Scholar
  5. 5.
    Mańczak, K., Nahorski, Z.: Komputerowa identyfikacja obiektów dynamicznych (Computer identification of dynamic plants). PWN, Warszawa (1983)Google Scholar
  6. 6.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009)CrossRefGoogle Scholar
  7. 7.
    Rzońca, D., Sadolewski, J., Stec, A., Świder, Z., Trybus, B., Trybus, L.: Developing a multiplatform control environment. J. Autom. Mob. Rob. Intell. Syst. 13(4) (2019). in printGoogle Scholar
  8. 8.
    Shin, G.W., Song, Y.J., Lee, T.B., Choi, H.K.: Genetic algorithm for identification of time delay systems from step responses. Int. J. Control Autom. Syst. 5(1), 79–85 (2007)Google Scholar
  9. 9.
    Trybus, L.: A set of PID tuning rules. Arch. Control Sci. 15(1), 5–18 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Trybus, L.: Automatyka i sterowanie (Control and regulation)(2017)., Accessed 03 Jan 2020
  11. 11.
    Yan, R., Liu, T., Chen, F., Dong, S.: Gradient-based step response identification of overdamped processes with time delay. Syst. Sci. Control Eng. 3(1), 504–513 (2015)CrossRefGoogle Scholar
  12. 12.
    Ziętkiewicz, J.: Identyfikacja obiektów sterowania: ćwiczenia laboratoryjne (Identification of control plants: lab experiments). Wyd. PP, Poznań (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer and Control EngineeringRzeszów University of TechnologyRzeszówPoland

Personalised recommendations