Advertisement

Synthesis and Generation of Random Fields in Nonlinear Environment

  • Jarosław FigwerEmail author
Conference paper
  • 82 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

In the paper, a generalisation of the method used for adaptive generation of random fields in linear environment to the case of synthesis and generation of such fields in a nonlinear environment is presented. The random fields to be synthesised and generated are defined by their power spectral density functions. Realisations of the random fields to be generated are obtained using a synthesis and simulation method of power spectral defined random processes based on multisine random time-series. Generation of the corresponding random fields in the nonlinear environment is aided by active noise control systems used to attenuate unwanted random noise present in this environment.

Keywords

Random fields Nonlinear systems Multisine random time-series Active noise control 

Notes

Acknowledgments

The partial financial support of this research by The Polish Ministry of Science and Higher Education is gratefully acknowledged.

References

  1. 1.
    Giri, F., Bai, E.W. (eds.): Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences. Springer, London (2010)zbMATHGoogle Scholar
  2. 2.
    Bendat, J.S., Piersol, A.G.: Random Data Analysis and Measurement Procedures. Wiley, New York (1986)zbMATHGoogle Scholar
  3. 3.
    Figwer, J.: Synthesis and Simulation of Random Processes, Zeszyty Naukowe Politechniki Ślaskiej, Seria Automatyka, Zeszyt nr 126, Gliwice (1999)Google Scholar
  4. 4.
    Figwer, J.: Multisine Transformation - Properties and Applications, Nonlinear Dynamics, pp. 331–346. Kluwer Academic Publishers, New York (2004)zbMATHGoogle Scholar
  5. 5.
    Figwer, J.: Identyfikacja modeli Wienera z wykorzystaniem wielosinusoidalnych losowych sygnałów pobudzajacyc. In: Materiły XV Krajowej Konferencji Automatyki, Warszawa, pp. 343–348 (2005)Google Scholar
  6. 6.
    Figwer, J.: Multisine Random Number Generator. Jacek Skalmierski Computer Studio, Gliwice (2007)Google Scholar
  7. 7.
    Figwer, J.: Nonlinear secondary path model identification. In: Proceedings of the 14th International Congress on Sound and Vibration, Cairns (2007)Google Scholar
  8. 8.
    Figwer, J.: Synthesis and generation of piece-wise stationary random acoustic local fields. In: Proceedings of the 15th International Congress on Sound and Vibration, Daejeon (2008)Google Scholar
  9. 9.
    Figwer, J.: Adaptive Synthesis and Generation of Random Fields. Jacek Skalmierski Computer Studio, Gliwice (2008)Google Scholar
  10. 10.
    Figwer, J.: Adaptive generation of acoustic local fields aided by active noise control systems. In: Proceedings of the Sixteenth International Congress on Sound and Vibration, Kraków (2009)Google Scholar
  11. 11.
    Figwer, J.: A New Approach to Acoustic Distributed Field Shaping, Mechanics, pp. 65–68 (2009)Google Scholar
  12. 12.
    Figwer, J.: Modelowanie systemów nieliniowych. In: Grzech, A., Juszczyszyn, K., Kwaśnicka, H., Nguyen, N.T. (eds.), Inżynieria Wiedzy i Systemy Ekspertowe, pp. 89–100. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2009)Google Scholar
  13. 13.
    Figwer, J.: Secondary path model identification in active noise control. In: Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 110–113 (2010)Google Scholar
  14. 14.
    Figwer, J.: Frequency response identification in the case of periodic disturbances. In: Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 1–4 (2011)Google Scholar
  15. 15.
    Figwer, J.: Wielosinusoidalne procesy losowe. Teoria i zastosowania, Akademicka Oficyna Wydawnicza EXIT, Warszawa (2012)Google Scholar
  16. 16.
    Figwer, J.: Hammerstein system identification with multisine excitations - quantized low-power observations case. In: Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 127–131 (2013)Google Scholar
  17. 17.
    Figwer, J.: Continuous-time nonlinear block-oriented dynamic system identification from sampled step and step-like responses. In: Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 77–82 (2018)Google Scholar
  18. 18.
    Figwer, J.: Identification of multichannel nonlinear systems excited by realisations of mutivariate orthogonal multisine random time-series. In: Proceedings of the 24th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 496–500 (2019)Google Scholar
  19. 19.
    Figwer J., Michalczyk, M.: On initialization of adaptation in active noise control. In: Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 533–537 (2018)Google Scholar
  20. 20.
    Figwer J., Michalczyk, M., Główka, T.: Accelerating the rate of convergence for LMS-like on-line identification and adaptation algorithms. Pt. 1, Basic ideas. In: Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 247–250 (2017)Google Scholar
  21. 21.
    George, N.V., Panda, G.: Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process. 92, 363–377 (2013)CrossRefGoogle Scholar
  22. 22.
    Giannakis, G.B., Serpedin, E.: A bibliography on nonlinear system identification. Signal Process. 81, 533–580 (2001)CrossRefGoogle Scholar
  23. 23.
    Główka T., Figwer, J.: Identification of linear subsystem for simple block-oriented nonlinear systems working in closed-loop - higher order spectra approach. In: Proceedings of the 18th International Conference on System Theory, Control and Computing, Sinaia, pp. 909–914 (2014)Google Scholar
  24. 24.
    Hansen, C.H., Snyder, S.D.: Active Control of Noise and Vibration. Cambridge University Press, Cambridge (1997)Google Scholar
  25. 25.
    Maliński, Ł., Figwer, J.: Nonlinear system identification using memetic algorithms. In: The 20th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 1086–1091 (2015)Google Scholar
  26. 26.
    Michalczyk, M.I., Główka, T., Figwer, J.: Adaptation in active noise control - a simulation case study. In: Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, pp. 420–425 (2016)Google Scholar
  27. 27.
    Mzyk, G.: Combined Parametric-Nonparametric Identification of Block-Oriented Systems. Lecture Notes in Control and Information Sciences. Springer, Cham (2014)CrossRefGoogle Scholar
  28. 28.
    Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Sydney (1992)zbMATHGoogle Scholar
  29. 29.
    Schoukens, M., Tiels, K.: Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85, 272–292 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations