Construction of a Homogeneous Approximation

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


We discuss the concept of homogeneous approximation and describe a method for constructing a homogeneous approximation for driftless systems, which uses free algebraic approach developed by the authors in their previous papers.


Nonlinear control system Homogeneous approximation Series of iterated integrals Core Lie subalgebra 


  1. 1.
    Crouch, P.E.: Solvable approximations to control systems. SIAM J. Control Optimiz. 22, 40–54 (1984). Scholar
  2. 2.
    Hermes, H.: Nilpotent approximations of control systems and distributions. SIAM J. Control Optimiz. 24, 731–736 (1986). Scholar
  3. 3.
    Agrachev, A.A., Gamkrelidze, R.V., Sarychev, A.V.: Local invariants of smooth control systems. Acta Appl. Math. 14, 191–237 (1989). Scholar
  4. 4.
    Sklyar, G.M., Ignatovich, S.Yu.: Approximation of time-optimal control problems via nonlinear power moment min-problems. SIAM J. Control Optim. 42, 1325–1346 (2003).
  5. 5.
    Bianchini, R.M., Stefani, G.: Graded approximation and controllability along a trajectory. SIAM J. Control Optim. 28, 903–924 (1990). Scholar
  6. 6.
    Hermes, H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33, 238–264 (1991). Scholar
  7. 7.
    Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 1–78 (1996).
  8. 8.
    Agrachev, A.A., Marigo, A.: Nonholonomic tangent spaces: intrinsic constructions and rigid dimensions. Electr. Res. Ann. Amer. Math. Soc. 9, 111–120 (2003). Scholar
  9. 9.
    Sklyar, G.M., Ignatovich, S.Yu.: Description of all privileged coordinates in the homogeneous approximation problem for nonlinear control systems. C. R. Math. Acad. Sci. Paris 344, 109–114 (2007).
  10. 10.
    Sklyar, G.M., Ignatovich, S.Yu.: Fliess series, a generalization of the Ree’s theorem, and an algebraic approach to a homogeneous approximation problem. Int. J. Control 81, 369–378 (2008).
  11. 11.
    Sklyar, G.M., Ignatovich, S.Yu.: Free algebras and noncommutative power series in the analysis of nonlinear control systems: an application to approximation problems. Dissertationes Math. (Rozprawy Mat.) 504, 1–88 (2014).
  12. 12.
    Laumond, J.-P.: Controllability of a multibody mobile robot. IEEE Trans. Robot. Autom. 9, 755–763 (1993). Scholar
  13. 13.
    Tilbury, D., Laumond, J.-P., Murray, R., Sastry, S., Walsh, G.: Steering car-like systems with trailers using sinusoids. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 1993–1998 (1992).
  14. 14.
    Rouchon, P., Fliess, M., Lévine, J., Martin, P.: Flatness, motion planning and trailer systems. In: Proceedings of 32nd IEEE Conference on Decision and Control, vol. 3, pp. 2700–2705 (1993).
  15. 15.
    Bellaïche, A., Jean, F., Risler, J.J.: Geometry of nonholonomic systems. In: Robot Motion Planning and Control. Lecture Notes in Control and Information Science, vol. 229, pp. 55–91 (1998).
  16. 16.
    Vendittelli, M., Laumond, J.-P., Oriolo, G.: Nilpotent approximation of nonholonomic systems with singularities: a case study. In: IFAC Proceedings Volumes, vol. 31, issue 17, pp. 751–756 (1998).
  17. 17.
    Jean, F.: The car with \(N\) trailers: characterization of the singular configurations. ESIAM Control Optimis. Calc. Var. 1, 241–266 (1996). Scholar
  18. 18.
    Pasillas-Lépine, W., Respondek, W.: On the geometry of Goursat structures. ESIAM Control Optimis. Calc. Var. 6, 119–181 (2001). Scholar
  19. 19.
    Mormul, P., Pelletier, F.: Symmetries of special 2-flags. J. Singul. 21, 187–204 (2020). Scholar
  20. 20.
    Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109, 3–40 (1981)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kawski, M.: Nonlinear control and combinatorics of words. In: Geometry of Feedback and Optimal Control, Monographs and Textbooks in Pure and Applied Mathematics, vol. 207, pp. 305–346. Dekker, New York (1998)Google Scholar
  22. 22.
    Reutenauer, C.: Free Lie Algebras. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  23. 23.
    Sklyar, G.M., Ignatovich, S.Yu.: Representations of control systems in the Fliess algebra and in the algebra of nonlinear power moments. Syst. Control Lett. 47, 227–235 (2002).
  24. 24.
    Ignatovich, S.Yu.: Realizable growth vectors of affine control systems. J. Dyn. Control Syst. 15, 557–585 (2009).
  25. 25.
    Ignatovich, S.Yu.: Normalization of homogeneous approximations of symmetric affine control systems with two controls. J. Dyn. Control Syst. 17, 1–48 (2011).
  26. 26.
    Fliess, M.: Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc. 2, 444–446 (1980). Scholar
  27. 27.
    Jakubczyk, B.: Local realizations of nonlinear causal operators. SIAM J. Control Optim. 24, 230–242 (1986). Scholar
  28. 28.
    Jakubczyk, B.: Introduction to geometric nonlinear control; controllability and Lie bracket. Lecture Notes, Summer School on Mathematical Control Theory, Trieste, 3–28 September 2001.
  29. 29.
    Melançon, G., Reutenauer, C.: Lyndon words, free algebras and shuffles. Canad. J. Math. 41, 577–591 (1989). Scholar
  30. 30.
    Ree, R.: Lie elements and an algebra assotiated with shuffles. Ann. Math. 68, 210–220 (1958). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of SzczecinSzczecinPoland
  2. 2.V. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations