Advertisement

Development of Control Modes Used in Manipulator for Remote USG Examination

Conference paper
  • 372 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

The article focuses on design and implementation of control modes for the control system of a manipulator used as the main part of a robot for remote medical ultrasound examination. This control system has been developed within the ReMeDi (Remote Medical Diagnostician) project. At the beginning of the article, the manipulator kinematics and its control system structure are addressed. The essential components of the control system are discussed in detail. Finally, issues connected with design of control modes and their solutions are presented.

Keywords

Remote medical examination Medical robot Manipulator Control system 

References

  1. 1.
    VGo, the manufacturer website. http://www.vgocom.com
  2. 2.
    Medirob, the manufacturer website. http://www.medirob.se
  3. 3.
    AdEchoTech, the manufacturer website. http://www.adechotech.com/products/
  4. 4.
    Remote Medical Diagnostician | ReMeDi Project | FP7 | CORDIS | European Commission. https://cordis.europa.eu/project/rcn/110646/factsheet/en
  5. 5.
    Kurnicki, A., Cholewiński, M., Stańczyk, B., Arent, K.: Implementation and evaluation of a bilateral teleoperation with use of wave variables in the ReMeDi system for remote medical examination. In: Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics (MMAR 2017), pp. 131–136 (2017).  https://doi.org/10.1109/MMAR.2017.8046811
  6. 6.
    Mathiassen, K., Fjellin, J.E., Glette, K., Hol, P.K., Elle, O.J.: An ultrasound robotic system using the commercial robot UR5. Frontiers Rob. AI 3, 1–16 (2016).  https://doi.org/10.3389/frobt.2016.00001CrossRefGoogle Scholar
  7. 7.
    Koizumi, N., Warisawa, S.: Construction methodology for a remote ultrasound diagnostic system. IEEE Trans. Rob. 25(3), 522–538 (2009).  https://doi.org/10.1109/TRO.2009.2019785CrossRefGoogle Scholar
  8. 8.
    Koizumi, N., Warisawa, S., Hashizume, H., Mitsuishi, M.: Continuous path controller for the remote ultrasound diagnostic system. IEEE/ASME Trans. Mech. 13(2), 206–218 (2008).  https://doi.org/10.1109/TMECH.2008.918530CrossRefGoogle Scholar
  9. 9.
    Santos, L., Cortesão, R.: Admittance control for robotic-assisted tele-echography. In: 16th International Conference on Advanced Robotics (ICAR), pp. 1–7 (2013).  https://doi.org/10.1109/ICAR.2013.6766502
  10. 10.
    Santos, L., Cortesão, R.: Computed-torque control for robotic-assisted tele-echography based on perceived stiffness estimation. IEEE Trans. Autom. Sci. Eng. 15(3), 1337–1354 (2018).  https://doi.org/10.1109/TASE.2018.2790900CrossRefGoogle Scholar
  11. 11.
    Kurnicki, A., Stańczyk, B.: Manipulator control system for remote USG examinantion. J. Autom. Mob. Rob. Intell. Syst. 13(2), 48–59 (2019).  https://doi.org/10.14313/JAMRIS/2-2019/18CrossRefGoogle Scholar
  12. 12.
    Stańczyk, B., Kurnicki, A., Arent, K.: Logical architecture of medical telediagnostic robotic system. In: Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR 2016), pp. 200–205 (2016).  https://doi.org/10.1109/MMAR.2016.7575133
  13. 13.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics. Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer, London (2009).  https://doi.org/10.1007/978-1-84628-642-1
  14. 14.
    Stańczyk, B., Peer, A., Buss, M.: Development of a high-performance haptic telemanipulation system with dissimilar kinematics. Adv. Rob. 20(11), 1303–1320 (2006).  https://doi.org/10.1163/156855306778792461CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Automation and Metrology, Faculty of Electrical Engineering and Computer ScienceLublin University of TechnologyLublinPoland
  2. 2.ACCREA EngineeringLublinPoland

Personalised recommendations