Selection of Methods for Intuitive, Haptic Control of the Underwater Vehicle’s Manipulator

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


This paper is the early report of available market and scientific solutions allowing intuitive control. Manipulator control is presented in form of the Human Machine Interaction loop that describes both machine possibilities of sensing the human control and human possibilities of sensing the machine state. The survey is presented in form of the description and discussion of the advantages, disadvantages and usability of the available solutions. The aim of the research is to chose the proper path of development of the new way of intuitive control.


Intuitive control HCI HMI Motion capture Haptics 



The research is financed by Polish National Centre for Research and Development under project number POIR.01.01.01-00-0266/18: Inteligentny, efektywny system prowadzenia specjalistycznych prac podwodnych (Smart and effective system for performing specialized subsea works) realized by SR Robotics sp. z o.o.


  1. 1.
    Adikari, S., McDonald, C.: User and usability modeling for HCI/HMI: a research design. In: 2006 International Conference on Information and Automation, pp. 151–154 (2006).
  2. 2.
    Blachuta, M., Grygiel, R., Czyba, R., Szafranski, G.: Attitude and heading reference system based on 3D complementary filter. In: 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 851–856 (2014).
  3. 3.
    Blackler, A., Popovic, V., Mahar, D.P.: Intuitive use of products. In: Design Research Society (DSR) International Conference: Common Ground, pp. 1–15. Staffordshire University Press (2002)Google Scholar
  4. 4.
    Bosscher, P.M., Summer, M.D.: Telematic interface with control signal scaling based on force sensor feedback (2014). US Patent 8,918,215Google Scholar
  5. 5.
    Gîrbacia, F., Postelnicu, C., Voinea, G.D.: Towards using natural user interfaces for robotic arm manipulation. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 188–193. Springer, Heidelberg (2019)Google Scholar
  6. 6.
    Hildebrandt, M., Christensen, L., Kerdels, J., Albiez, J., Kirchner, F.: Realtime motion compensation for ROV-based tele-operated underwater manipulators. In: OCEANS 2009-EUROPE, pp. 1–6. IEEE (2009)Google Scholar
  7. 7.
    Hinchet, R., Vechev, V., Shea, H., Hilliges, O.: Dextres: wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake. In: The 31st Annual ACM Symposium on User Interface Software and Technology, pp. 901–912. ACM (2018)Google Scholar
  8. 8.
    Jhang, L.H., Santiago, C., Chiu, C.S.: Multi-sensor based glove control of an industrial mobile robot arm. In: 2017 International Automatic Control Conference (CACS), pp. 1–6. IEEE (2017)Google Scholar
  9. 9.
    Katyal, K.D., Brown, C.Y., Hechtman, S.A., Para, M.P., McGee, T.G., Wolfe, K.C., Murphy, R.J., Kutzer, M.D., Tunstel, E.W., McLoughlin, M.P., et al.: Approaches to robotic teleoperation in a disaster scenario: from supervised autonomy to direct control. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1874–1881. IEEE (2014)Google Scholar
  10. 10.
    Kim, T.W., Marani, G., Yuh, J.: Underwater vehicle manipulators, pp. 407–422. Springer, Cham (2016).
  11. 11.
    Kofman, J., Wu, X., Luu, T.J., Verma, S.: Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Trans. Ind. Electron. 52(5), 1206–1219 (2005)CrossRefGoogle Scholar
  12. 12.
    Le Ba, N., Oh, S., Sylvester, D., Kim, T.T.H.: A 256 pixel, 21.6 \(\mu \)w infrared gesture recognition processor for smart devices. Microelectron. J. 86, 49–56 (2019)CrossRefGoogle Scholar
  13. 13.
    Li, S., Rameshwar, R., Votta, A.M., Onal, C.D.: Intuitive control of a robotic arm and hand system with pneumatic haptic feedback. IEEE Rob. Autom. Lett. 4(4), 4424–4430 (2019)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Huang, B., Ajoudani, A., Yang, C., Su, C.Y., Bicchi, A.: Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Trans. Rob. 34(1), 264–271 (2017)CrossRefGoogle Scholar
  15. 15.
    Liang, H., Yuan, J., Thalmann, D., Zhang, Z.: Model-based hand pose estimation via spatial-temporal hand parsing and 3D fingertip localization. Vis. Comput. 29(6–8), 837–848 (2013)CrossRefGoogle Scholar
  16. 16.
    Lu, Z., Zhang, Y., Cheng, D., Wang, S., et al.: Method of dual manipulator human-friendly control based on wireless motion capture technology. In: 2018 11th International Workshop on Human Friendly Robotics (HFR), pp. 31–35. IEEE (2018)Google Scholar
  17. 17.
    Ma, J., Khang, G.: Quantification and adjustment of pressure and vibration elicited by transcutaneous electrical stimulation. Int. J. Precis. Eng. Manuf. 19(8), 1233–1238 (2018)CrossRefGoogle Scholar
  18. 18.
    MacKenzie, I.S.: Input devices and interaction techniques for advanced computing. Virt. Environ. Adv. Interf. Des., 437–470 (1995)Google Scholar
  19. 19.
    Mardiyanto, R., Utomo, M.F.R., Purwanto, D., Suryoatmojo, H.: Development of hand gesture recognition sensor based on accelerometer and gyroscope for controlling arm of underwater remotely operated robot. In: 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 329–333 (2017).
  20. 20.
    Nuelle, K., Schulz, M.J., Aden, S., Dick, A., Munske, B., Gaa, J., Kotlarski, J., Ortmaier, T.: Force Sensing, Low-Cost Manipulator in Mobile Robotics. In: 3rd IEEE International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 22–24 April 2017, pp. 196–201. IEEE (2017)Google Scholar
  21. 21.
    Premarathna, C.P., Ruhunage, I., Chathuranga, D.S., Lalitharatne, T.D.: Haptic feedback system for an artificial prosthetic hand for object grasping and slip detection: a preliminary study. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2304–2309. IEEE (2018)Google Scholar
  22. 22.
    Stańczyk, K., Poświata, A., Roksela, A., Mikulski, M.: Assessment of muscle fatigue, strength and muscle activation during exercises with the usage of robot luna EMG, among patients with multiple sclerosis. In: International Conference on Information Technologies in Biomedicine, pp. 117–128. Springer, Heidelberg (2019)Google Scholar
  23. 23.
    Suau, X., Alcoverro, M., López-Méndez, A., Ruiz-Hidalgo, J., Casas, J.R.: Real-time fingertip localization conditioned on hand gesture classification. Image Vis. Comput. 32(8), 522–532 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, K.J., Zheng, C.Y., Mao, Z.H.: Human-centered, ergonomic wearable device with computer vision augmented intelligence for VR multimodal human-smart home object interaction. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 767–768. IEEE (2019)Google Scholar
  25. 25.
    Yamakawa, Y., Matsui, Y., Ishikawa, M.: Human–robot collaborative manipulation using a high-speed robot hand and a high-speed camera. In: 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 426–429. IEEE (2018)Google Scholar
  26. 26.
    Zhang, H., Yan, X., Li, H.: Ergonomic posture recognition using 3D view-invariant features from single ordinary camera. Autom. Constr. 94, 1–10 (2018)CrossRefGoogle Scholar
  27. 27.
    Zhang, K., Follmer, S.: Electrostatic adhesive brakes for high spatial resolution refreshable 2.5 D tactile shape displays. In: 2018 IEEE Haptics Symposium (HAPTICS), pp. 319–326. IEEE (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.SR Robotics sp. z o.o.KatowicePoland

Personalised recommendations