Advertisement

Adaptive MRAC Controller in the Effector Trajectory Generator for Industry 4.0 Machines

Conference paper
  • 375 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

Modern industry, referring to the concept of the Fourth Industrial Revolution, sets new standards for automation systems. There are many applications, such as glue and paint application, which can be improved by using a trajectory generator described in g-code language. With such an application, it would be possible to meet one of the requirements of the standard, that is mass unit production. Unfortunately, the g-code is accessible only for cnc devices and some special systems, which can be only semi-automatic. This article shows the project of a PLC based generator for the effector movement trajectory, which interprets the g-code in fully automatic mode. An adaptive regulator was also proposed to reduce the vibration of the effector.

Keywords

Adaptive controller Industry 4.0 Industrial manufacturing systems 

References

  1. 1.
    Chowdhary, G., Kingravi, H.A., How, J.P., Vela, P.A.: Bayesian nonparametric adaptive control using Gaussian processes. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 537–550 (2015).  https://doi.org/10.1109/TNNLS.2014.2319052MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dominik, I.: Advanced controlling of the prototype of SMA linear actuator. Solid State Phenom. 177(1), 93–101 (2011).  https://doi.org/10.4028/www.scientific.net/SSP.177.93CrossRefGoogle Scholar
  3. 3.
    Dominik, I.: Type-2 fuzzy logic controller for position control of shape memory alloy wire actuator. J. Intell. Mater. Syst. Struct. 27(14), 1917–1926 (2016).  https://doi.org/10.1177/1045389X15610907CrossRefGoogle Scholar
  4. 4.
    Garon, M., Boulet, P.O., Doironz, J.P., Beaulieu, L., Lalonde, J.F.: Real-time high resolution 3D data on the HoloLens. In: Adjunct Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2016, pp. 189–191 (2017).  https://doi.org/10.1109/ISMAR-Adjunct.2016.0073
  5. 5.
    Huang, K.Y., Chin, H.C., Huang, Y.C.: A model reference adaptive control strategy for interruptible load management. IEEE Trans. Power Syst. 19(1), 683–689 (2004).  https://doi.org/10.1109/TPWRS.2003.821444CrossRefGoogle Scholar
  6. 6.
    Jain, P., Nigam, M.J.: Design of a model reference adaptive controller using modified MIT rule for a second order system. Adv. Electron. Electr. Eng. 3(4), 477–484 (2013)Google Scholar
  7. 7.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3(1), 18–23 (2015).  https://doi.org/10.1016/j.mfglet.2014.12.001CrossRefGoogle Scholar
  8. 8.
    Lele, A.: Industry 4.0. In: Smart Innovation, Systems and Technologies, pp. 205–215. Springer Science and Business Media Deutschland GmbH (2019).  https://doi.org/10.1007/978-981-13-3384-2_13
  9. 9.
    Lim, Y., Venugopal, R., Galip Ulsoy, A.: Auto-tuning and adaptive control of sheet metal forming. Control Eng. Pract. 20(2), 156–164 (2012).  https://doi.org/10.1016/j.conengprac.2011.10.006CrossRefGoogle Scholar
  10. 10.
    Maiti, S., Chakraborty, C., Hori, Y., Ta, M.C.: Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans. Industr. Electron. 55(2), 594–601 (2008).  https://doi.org/10.1109/TIE.2007.911952CrossRefGoogle Scholar
  11. 11.
    Pankaj, S., Kumar, J.S.: Comparative analysis of MIT rule and Lyapunov rule in model reference adaptive control scheme. Innov. Syst. Des. Eng. 2(1), 154–163 (2011).  https://doi.org/10.1007/0-306-46887-5MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reinhard, G., Jesper, V., Stefan, S.: Industry 4.0: building the digital enterprise. 2016 Global Industry 4.0 Survey, vol. 46, issue 1, pp. 35–50 (2016).  https://doi.org/10.1080/01969722.2015.1007734
  13. 13.
    Sunwoo, M., Cheok, K.C., Huang, N.J.: Model reference adaptive control for vehicle active suspension systems. IEEE Trans. Industr. Electron. 38(3), 217–222 (1991).  https://doi.org/10.1109/41.87590CrossRefGoogle Scholar
  14. 14.
    Zhang, D., Wei, B.: A review on model reference adaptive control of robotic manipulators (2017).  https://doi.org/10.1016/j.arcontrol.2017.02.002
  15. 15.
    Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 3(5), 616–630 (2017).  https://doi.org/10.1016/J.ENG.2017.05.015CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering and RoboticsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations