Advertisement

Trajectory Following Quasi-Sliding Mode Control for Arbitrary Relative Degree Systems

  • Katarzyna AdamiakEmail author
Conference paper
  • 88 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

This study presents a new approach to discrete-time sliding mode control, based on a new trajectory following reaching law for arbitrary relative degree output systems. We divide the control design to two stages. First, we generate a desired profile of the sliding variable with a conventional switching type reaching law of Gao et al. Next, utilizing arbitrary relative degree sliding variable, we introduce a trajectory following reaching law for the real disturbed system. Our strategy ensures that the representative point of the system approaches the sliding plane monotonically and crosses it in finite time. After the sign of the sliding variable has changed for the first time, it changes again in each consecutive time step and its absolute value does not exceed an a priori known constant. Moreover, the strategy guarantees a reduction of the quasi-sliding mode band width, which results in improved robustness of the system. The paper is concluded with a simulation example.

Keywords

Discrete-Time systems Arbitrary relative degree Reaching law Sliding mode control Trajectory generator 

References

  1. 1.
    Emelyanov, S.V.: Variable-Structure Control Systems. Nauka, Moscow (1967). (in Russian)zbMATHGoogle Scholar
  2. 2.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Draženović, B.: The invariance conditions in variable structure systems. Automatica 5(3), 287–295 (1969)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Milosavljević, D.: General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom. Rem. Control 46(3), 307–314 (1985)zbMATHGoogle Scholar
  5. 5.
    Sarpturk, S.Z., Istefanopulos, Y., Kaynak, O.: On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 22(10), 930–932 (1987)CrossRefGoogle Scholar
  6. 6.
    Utkin, V.I., Drakunov, S.V.: On discrete-time sliding modes. IFAC Proc. Vol. 22(3), 273–278 (1989)CrossRefGoogle Scholar
  7. 7.
    Bartolini, G., Ferrara, A., Utkin, V.I.: Adaptive sliding mode control in discrete-time-systems. Automatica 31(5), 769–773 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, W.B., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)CrossRefGoogle Scholar
  9. 9.
    Bartoszewicz, A.: Remarks on ‘Discrete-time variable structure control systems’. IEEE Trans. Ind. Electron. 43(1), 235–238 (1996)MathSciNetGoogle Scholar
  10. 10.
    Veselić, B., Perunicic-Draženović, B., Milosavljević, Č.: Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans. Ind. Electron. 57(11), 3840–3847 (2010)CrossRefGoogle Scholar
  11. 11.
    Ma, H., Wu, J., Xiong, Z.: A novel exponential reaching law of discrete-time sliding-mode control. IEEE Trans. Ind. Electron. 64(5), 3840–3850 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhang, F.: Switching reaching law based switched sliding mode control. In: Proceedings of Chinese Control Conference (CCC), Chengdu, China, pp. 4735–4739 (2016)Google Scholar
  13. 13.
    Bartoszewicz, A., Latosiński, P.: Discrete time sliding mode control with reduced switching - a new reaching law approach. Int. J. Robust Nonlinear Control 26(1), 47–68 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Xu, Q., et al.: A novel exponential reaching law for sliding mode control of discrete-time system with disturbance. In: 2018 ANZCC, Melbourne, VIC, Australia, pp. 275–280 (2018)Google Scholar
  15. 15.
    Ma, H., Li, Y.: Multi-power reaching law based discrete-time sliding-mode control. IEEE Access 7, 49822–49829 (2019)CrossRefGoogle Scholar
  16. 16.
    Bartoszewicz, A.: Discrete-time quasi-sliding-mode control strategies. IEEE Trans. Ind. Electron. 45(4), 633–637 (1998)CrossRefGoogle Scholar
  17. 17.
    Golo, G., Milosavljević, Č.: Robust discrete-time chattering free sliding mode control. Syst. Control Lett. 41, 19–28 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bartoszewicz, A., Leśniewski, P.: Reaching law-based sliding mode congestion control for communication networks. IET Proc. Control Theory Appl. 8(17), 1914–1920 (2014)CrossRefGoogle Scholar
  19. 19.
    Chakrabarty, S., Bandyopadhyay, B.: A generalized reaching law for discrete time sliding mode control. Automatica 52, 83–86 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chakrabarty, S., Bandyopadhyay, B.: A generalized reaching law with different convergence rates. Automatica 63, 34–37 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Janardhanan, S., Kariwala, V.: Multirate output-feedback-based lq-optimal discrete-time sliding mode control. IEEE Trans. Autom. Control 53(1), 367–373 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bandyopadhyay, B., Janardhanan, S.: Discrete-Time Sliding Mode Control: A Multirate Output Feedback Approach. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  23. 23.
    Janardhanan, S., Bandyopadhyay, B.: Multirate output feedback based robust quasi-sliding mode control of discrete-time systems. IEEE Trans. Autom. Control 52(3), 499–503 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bandyopadhyay, B., Behera, A.K.: Event-Triggered Sliding Mode Control, Studies in Systems, Decision and Control. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  25. 25.
    Behera, A.K., Bandyopadhyay, B., Reger, J.: Discrete event-triggered sliding mode control with fast output sampling feedback. In: 2016 14th International Workshop on Variable Structure Systems (VSS), Nanjing, China, pp. 148–153 (2016)Google Scholar
  26. 26.
    Chakrabarty, S., et al.: Discrete sliding mode control for systems with arbitrary relative degree output. In: 14th International Workshop on Variable Structure Systems (VSS), Nanjing, China, pp. 160–165 (2016)Google Scholar
  27. 27.
    Chakrabarty, S., Bartoszewicz, A.: Improved robustness and performance of discrete time sliding mode control systems. ISA Trans. 65, 143–149 (2016)CrossRefGoogle Scholar
  28. 28.
    Bartoszewicz, A., Latosiński, P.: Reaching law for DSMC systems with relative degree 2 switching variable. Int. J. Control 90(8), 1626–1638 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bartoszewicz, A., Latosiński, P.: Generalization of Gao’s reaching law for higher relative degree sliding variables. IEEE Trans. Autom. Control 63(9), 3173–3179 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Automatic ControlŁódź University of TechnologyŁódźPoland

Personalised recommendations