A Review of Sliding Mode Controllers with the Application of Time-Varying Switching Hyperplanes

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


Sliding mode control is an effective method of regulation, that provides robustness to external disturbances and modeling uncertainties. Moreover, it is computationally efficient. The application of the time-varying sliding hyperplanes allows one to select parameters of these hyperplanes in order to eliminate the reaching phase. The main advantage of this approach is that we obtain robustness for the whole regulation process, not only after the reaching phase, which is an issue when applying time-invariant switching hyperplanes. This paper presents recent research in the area of time-varying sliding hyperplanes in theory as well as in practice.


Sliding mode control Variable structure systems Time-varying switching hyperplanes 


  1. 1.
    Bartoszewicz, A.: Time-varying sliding modes for second-order systems. Proc. IEE Part D Control Theory Appl. 143(5), 455–462 (1996)Google Scholar
  2. 2.
    Bartoszewicz, A., Nowacka-Leverton, A.: SMC without the reaching phase - the switching plane design for the third-order system. Proc. IET Part D Control Theory Appl. 1(5), 1461–1470 (2007)Google Scholar
  3. 3.
    Bartoszewicz, A., Nowacka, A.: Optimal design of the shifted switching planes for VSC of the third order system. Trans. Inst. Meas. Control 28(4), 335–352 (2006)CrossRefGoogle Scholar
  4. 4.
    Bartoszewicz, A., Nowacka, A.: Reaching phase elimination in variable structure control of the third order system with state constraints. Kybernetika 42(1), 111–126 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bartoszewicz, A., Nowacka, A.: Sliding mode control of the third-order system subject to velocity, acceleration and input signal constraints. Int. J. Adapt. Control Signal Process. 21(8–9), 779–794 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bartoszewicz, A., Nowacka-Leverton, A.: Time-Varying Sliding Modes for Second and Third Order Systems. Springer Verlag, Heidelberg (2009)zbMATHGoogle Scholar
  7. 7.
    Bartoszewicz, A., Nowacka-Leverton, A.: ITAE optimal sliding modes for third order systems with input signal and state constraints. IEEE Trans. Autom. Control 55(8), 1928–1932 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choi, S.B., Cheong, C.C., Park, D.W.: Moving switching surfaces for robust control of second order variable structure systems. Int. J. Control 58(1), 229–245 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cong, B., Liu, X., Chen, Z.: A precise and robust control strategy for rigid spacecraft eigenaxis rotation. Chin. J. Aeronaut. 24(4), 484–492 (2011)CrossRefGoogle Scholar
  10. 10.
    Cong, B., Liu, X., Chen, Z.: Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronaut. 68(11–12), 1973–1986 (2011)CrossRefGoogle Scholar
  11. 11.
    Corradini, M.L., Orlando, G.: Linear unstable plants with saturating actuators: robust stabilization by a time varying sliding surface. Automatica 43(1), 88–94 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Furuta, K.: Sliding mode control of a discrete system. Syst. Control Lett. 14, 145–152 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Geng, J., Sheng, Y., Liu, X.: Time-varying nonsingular terminal sliding mode control for robot manipulators. Trans. Inst. Meas. Control 36(5), 604–617 (2014)CrossRefGoogle Scholar
  14. 14.
    Iwasaki, M., Tsujiuchi, N., Koizumi, T.: Force control for unknown environment using sliding mode controller with gain-scheduled variable hyperplane. In: IEEE Annual Conference of the Industrial Electronics Society, pp. 1812–1817 (2002)Google Scholar
  15. 15.
    Kanai, Y., Kasahara, M., Mori, Y.: On sliding mode control with time varying switching hyperplane for vertical driving arm. In: 2009 4th IEEE Conference on Industrial Electronics and Applications, pp. 23–28. IEEE (2009)Google Scholar
  16. 16.
    Komurcugil, H.: Rotating-sliding-line-based sliding-mode control for single-phase UPS inverters. IEEE Trans. Ind. Electron. 59(10), 3719–3726 (2012)CrossRefGoogle Scholar
  17. 17.
    Latosiński, P., Bartoszewicz, A.: Sliding mode control with time-varying switching hyperplane for data transmission networks. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE (2018)Google Scholar
  18. 18.
    Lu, Y.S., Chiu, C.W., Chen, J.S.: Time-varying sliding-mode control for finite-time convergence. Electr. Eng. 92(7), 257–268 (2010)CrossRefGoogle Scholar
  19. 19.
    Milosavljević, C̆.: General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom. Remote Control 46, 307–314 (1985)Google Scholar
  20. 20.
    Mizoshiri, T., Mori, Y.: Sliding mode control with a linear sliding surface that varies along a smooth trajectory. In: 2016 SICE International Symposium on Control Systems (ISCS). IEEE (2016)Google Scholar
  21. 21.
    Nowacka-Leverton, A., Michałek, M., Pazderski, D., Bartoszewicz, A.: Experimental verification of SMC with moving switching lines applied to hoisting crane vertical motion control. ISA Trans. 51(2), 682–693 (2012)CrossRefGoogle Scholar
  22. 22.
    Sivert, A., Betin, F., Faqir, A., Capolino, G.A.: Robust control of an induction machine drive using a time-varying sliding surface. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1369–1374 (2004)Google Scholar
  23. 23.
    Tian, B., Fan, W., Zong, Q., Wang, J., Wang, F.: Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode. J. Franklin Inst. 350(7), 1787–1807 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tokat, S., Eksin, I., Guzelkaya, M.: New approaches for on-line tuning of the linear sliding surface slope in sliding mode controllers. Turkish J. Electr. Eng. Comput. Sci. 11(1), 45–59 (2003)Google Scholar
  25. 25.
    Tokat, S., Eksin, I., Guzelkaya, M.: Linear time-varying sliding surface design based on co-ordinate transformation for high-order systems. Trans. Inst. Meas. Control 31(1), 51–70 (2009)CrossRefGoogle Scholar
  26. 26.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Utkin, V.I., Drakunow, S.V.: On discrete-time sliding mode control. In: IFAC Conference on Nonlinear Control, pp. 484–489 (1989)Google Scholar
  28. 28.
    Yagiz, N., Hacioglu, Y.: Fuzzy sliding modes with moving surface for the robust control of a planar robot. J. Vib. Control 11(7), 903–922 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yagiz, N., Hacioglu, Y., Taskin, Y.: Fuzzy sliding-mode control of active suspensions. IEEE Trans. Ind. Electron. 55(11), 3883–3890 (2008)CrossRefGoogle Scholar
  30. 30.
    Yilmaz, C., Hurmuzlu, Y.: Eliminating the reaching phase from variable structure control. J. Dyn. Syst. Meas. Control 122(4), 753–757 (2000)CrossRefGoogle Scholar
  31. 31.
    Yorgancioglu, F., Komurcugil, H.: Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems. Expert Syst. Appl. 37(10), 6764–6774 (2010)CrossRefGoogle Scholar
  32. 32.
    Zhao, Y., Sheng, Y., Liu, X.: A novel finite time sliding mode control for robotic manipulators. In: IFAC World Congress, Cape Town, Republic of South Africa, pp. 7336–7341 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Automatic ControlŁodź University of TechnologyŁodźPoland

Personalised recommendations