Reference Trajectory Based SMC of DCDC Buck Converter

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


In this paper, discrete time sliding mode control of a DCDC buck converter is considered. It is demonstrated, that using a “traditional” SMC for this task can result in excessive values of the inductor current at the start of the control process. This makes the controller impractical, as one would have to significantly over-engineer the inductor to prevent its damage. On the other hand, using the reaching law approach can minimize this problem, however at the cost of reducing the robustness. Therefore, a reference trajectory following SMC is proposed, which allows to limit the initial value of the inductor current, while maintaining good robustness w.r.t. disturbances, i.e. load changes. These important properties are demonstrated in computer simulations, which take into account all aspects of real application: the PWM modulation, sampling the continuous signals etc.


Sliding mode control Buck converter Variable structure systems 


  1. 1.
    Bartoszewicz, A.: A new reaching law for sliding mode control of continuous time systems with constraints. Trans. Inst. Meas. Control 37(4), 515–521 (2015)CrossRefGoogle Scholar
  2. 2.
    Bartoszewicz, A., Adamiak, K.: A reference trajectory based discrete time sliding mode control strategy. Int. J. Appl. Math. Comput. Sci. 29(3), 517–525 (2019)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartoszewicz, A., Adamiak, K.: Discrete time sliding mode control with a desired switching variable generator. IEEE Trans. Autom. Control 65(4), 1807–1814 (2020)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bartoszewicz, A., Adamiak, K.: Model reference discrete-time variable structure control. Int. J. Adapt. Control Signal Process. 32(10), 1440–1452 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bartoszewicz, A., Latosiński, P.: Discrete time sliding mode control with reduced switching - a new reaching law approach. Int. J. Robust Nonlinear Control 26(1), 47–68 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bartoszewicz, A., Leśniewski, P.: New switching and nonswitching type reaching laws for SMC of discrete time systems. IEEE Trans. Control Syst. Technol. 24(2), 670–677 (2016)CrossRefGoogle Scholar
  7. 7.
    Bartoszewicz, A., Leśniewski, P.: Reaching law approach to the sliding mode control of periodic review inventory systems. IEEE Trans. Autom. Sci. Eng. 11, 810–817 (2014)CrossRefGoogle Scholar
  8. 8.
    Bartoszewicz, A., Leśniewski, P.: Reaching law-based sliding mode congestion control for communication networks. IET Control Theory Appl. 8(17), 1914–1920 (2014)CrossRefGoogle Scholar
  9. 9.
    DeCarlo, R.S., Zak, S., Mathews, G.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76, 212–232 (1988)CrossRefGoogle Scholar
  10. 10.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)CrossRefGoogle Scholar
  11. 11.
    Erdem, H.: Comparison of fuzzy, PI and fixed frequency sliding mode controller for DC-DC converters. In: ACEMP 2007 and Electromotion 2007 Joint Conference, pp. 684–689 (2007)Google Scholar
  12. 12.
    Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Industr. Electron. 42(2), 117–122 (1995)CrossRefGoogle Scholar
  13. 13.
    Guo, S., Lin-Shi, X., Allard, B., Gao, Y., Ruan, Y.: Digital sliding-mode controller for high-frequency DC/DC SMPS. IEEE Trans. Power Electron. 25(5), 1120–1123 (2010)CrossRefGoogle Scholar
  14. 14.
    Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2011)CrossRefGoogle Scholar
  15. 15.
    Latosiński, P., Bartoszewicz, A.: Reaching law based DSMC with a reference model. IFAC-PapersOnLine 52(16), 777–782 (2019)CrossRefGoogle Scholar
  16. 16.
    Liu, P.J., Chang, C.W.: CCM noninverting buck-boost converter with fast duty-cycle calculation control for line transient improvement. IEEE Trans. Power Electron. 33(6), 5097–5107 (2018)CrossRefGoogle Scholar
  17. 17.
    Renaudineau, H., Martin, J.P., Nahid-Mobarakeh, B., Pierfederici, S.: DC–DC converters dynamic modeling with state observer-based parameter estimation. IEEE Trans. Power Electron. 30(6), 3356–3363 (2015)CrossRefGoogle Scholar
  18. 18.
    Shao, S., Wheeler, P.W., Clare, J.C., Watson, A.J.: Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans. Power Electron. 28(11), 4867–4872 (2013)CrossRefGoogle Scholar
  19. 19.
    Tao, C., Fayed, A.A.: A buck converter with reduced output spurs using asynchronous frequency hopping. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 709–713 (2011)CrossRefGoogle Scholar
  20. 20.
    Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)CrossRefGoogle Scholar
  21. 21.
    Tan, S.C., Lai, Y.M., Tse, C.K., Cheung, M.K.H.: A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters. IEEE Trans. Power Electron. 20(6), 1379–1392 (2005)CrossRefGoogle Scholar
  22. 22.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton (2009)Google Scholar
  23. 23.
    Utkin, V.: Sliding Modes in Control and Optimization. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  24. 24.
    Veerachary, M.: Two-switch semiquadratic buck converter. IEEE Trans. Industr. Electron. 64(2), 1185–1194 (2017)CrossRefGoogle Scholar
  25. 25.
    Veerachary, M.: Analysis of minimum-phase fourth-order buck DC-DC converter. IEEE Trans. Industr. Electron. 63(1), 144–154 (2016)CrossRefGoogle Scholar
  26. 26.
    Xue, J., Lee, H.: A 2-MHz 60-W zero-voltage-switching synchronous noninverting buck-boost converter with reduced component values. IEEE Trans. Circuits Syst. II Express Briefs 62(7), 716–720 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Automatic ControlLodz University of TechnologyŁódźPoland

Personalised recommendations