Advertisement

Vision-Based Modelling and Control of Small Underwater Vehicles

Conference paper
  • 384 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

Modelling and control of underwater vehicles in most cases, demand their hydrodynamic parameters’ identification, which is a timely and technically demanding task. Therefore, more convenient methods of utilising vision systems have been introduced. However, many solutions presented in the literature assume that a camera is mounted in the central part of a swimming pool. What is more, they are not applicable for trajectory determination, which constitutes an essential factor in devising a control system of autonomous vehicles. For that reason, a computer vision system has been designed and developed, which enables tracking a vehicle and determining its trajectory as well. The obtained results indicate that the developed system enables modelling and control of underwater vehicles under laboratory conditions.

Keywords

Mathematical model Underwater vehicle Vision system Trajectory determination 

Notes

Acknowledgement

The paper is supported by Project No. DOBR-BIO4/033/13015/2013, entitled “Autonomous underwater vehicles with silent undulating propulsion for underwater reconnaissance” financed by Polish National Centre of Research and Development.

References

  1. 1.
    Krupinski, S., Allibert, G., Hua, M.D., Hamel, T.: Pipeline tracking for fully-actuated autonomous underwater vehicle using visual servo control. In: 2012 American Control Conference (ACC), pp. 6196–6202 (2012)Google Scholar
  2. 2.
    Campos, E., Comby, F., Creuze, V., Torres, J., Antonio, E., Strauss, O.: AUV pipeline following by artificial vision. In: Congreso Internacional de Robotica Computation, pp. 251–256 (2015)Google Scholar
  3. 3.
    Chen, H.-H.H.: Vision-based tracking with projective mapping for parameter identification of remotely operated vehicles. Ocean Eng. 35, 983–994 (2008).  https://doi.org/10.1016/j.oceaneng.2008.03.001CrossRefGoogle Scholar
  4. 4.
    Hozyn, S., Zak, B.: Local image features matching for real-time seabed tracking applications. J. Mar. Eng. Technol. (2017).  https://doi.org/10.1080/20464177.2017.1386266CrossRefGoogle Scholar
  5. 5.
    Praczyk, T., Hozyn, S., Bodnar, T., Pietrukaniec, L., Blaszczyk, M., Zablotny, M.: Concept and first results of optical navigational system. Trans. Marit. Sci. 8, 46–53 (2019).  https://doi.org/10.7225/toms.v08.n01.005CrossRefGoogle Scholar
  6. 6.
    Hozyn, S., Zak, B.: A concept for application of a stereo vision method in control system of an underwater vehicle. Appl. Mech. Mater. 817, 73–80 (2016).  https://doi.org/10.4028/www.scientific.net/AMM.817.73CrossRefGoogle Scholar
  7. 7.
    Szymak, P., Morawski, M., Malec, M.: Conception of research on bionic underwater vehicle with undulating propulsion. Solid State Phenom. 180, 160–167 (2011).  https://doi.org/10.4028/www.scientific.net/SSP.180.160CrossRefGoogle Scholar
  8. 8.
    Govinda, L., Salgado-Jimenez, T., Bandala-Sanchez, M., Nava-Balanzar, L., Hernandez-Alvarado, R., Antonio, J.: Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Adv. Robot. Syst. 11, 1 (2014).  https://doi.org/10.5772/56810CrossRefGoogle Scholar
  9. 9.
    Praczyk, T., Szymak, P., Naus, K., Pietrukaniec, L., Hozyn, S.: Report on research with biomimetic autonomous underwater vehicle — low level control. Sci. J. Pol. Nav. Acad. 212, 105–123 (2018).  https://doi.org/10.2478/sjpna-2018-0006CrossRefGoogle Scholar
  10. 10.
    Praczyk, T., Szymak, P., Naus, K., Pietrukaniec, L., Hozyn, S.: Report on research with biomimetic autonomous underwater vehicle — navigation and autonomous operation. Sci. J. Pol. Nav. Acad. 213, 53–67 (2019).  https://doi.org/10.2478/sjpna-2018-0013CrossRefGoogle Scholar
  11. 11.
    Fossen, T.I.: Marine Control Systems?: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002). ISBN 8292356002Google Scholar
  12. 12.
    Wang, W., Clark, C.M.: Modeling and simulation of the VideoRay Pro III underwater vehicle. In: Ocean. 2006 - Asia Pacific 2007 (2006).  https://doi.org/10.1109/oceansap.2006.4393862
  13. 13.
    Viswanath, P., Mathew, M., Milgram, J., Von Alt, C., Prestero, T.: Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle by in partial fulfillment of the requirements for the degrees of and at the Chairperson, Committee on Graduate Students Verification of a Six-Degree of F. Ocean Sci. pp. 1–9 (2001).  https://doi.org/10.1575/1912/3040
  14. 14.
    Monroy-Anieva, J.A., Rouviere, C., Campos-Mercado, E., Salgado-Jimenez, T., Garcia-Valdovinos, L.G.: Modeling and control of a micro AUV: Objects follower approach. Sensors (Switzerland) 18, 1–18 (2018).  https://doi.org/10.3390/s18082574CrossRefGoogle Scholar
  15. 15.
    Miskovic, N., Vukic, Z., Barisic, M.: Identification of coupled mathematical models for underwater vehicles. In: OCEANS 2007 – Europe, pp. 1–6. IEEE (2007)Google Scholar
  16. 16.
    Miskovic, N., Vukic, Z., Barisic, M.: Identification of unmanned underwater vehicles by self-oscillation method. Automatika 50, 167–183 (2009)Google Scholar
  17. 17.
    Miskovic, N., Vukic, Z., Barisic, M.: Identification of underwater vehicles for the purpose of autopilot tuning. In: Underwater Vehicles, pp. 582–601. InTech, Vienna (2008). ISBN 9789537619497Google Scholar
  18. 18.
    Hozyn, S., Zak, B.: Distance measurement using a stereo vision system. Solid State Phenom. 196, 189–197 (2013).  https://doi.org/10.4028/www.scientific.net/SSP.196.189CrossRefGoogle Scholar
  19. 19.
    Shortis, M.: Calibration techniques for accurate measurements by underwater camera systems. Sensors 15, 30810–30826 (2015).  https://doi.org/10.3390/s151229831CrossRefGoogle Scholar
  20. 20.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2002).  https://doi.org/10.1109/34.888718CrossRefGoogle Scholar
  21. 21.
    Silvatti, A.P., Salve Dias, F.A., Cerveri, P., Barros, R.M.L.: Comparison of different camera calibration approaches for underwater applications. J. Biomech. 45, 1112–1116 (2012).  https://doi.org/10.1016/j.jbiomech.2012.01.004CrossRefGoogle Scholar
  22. 22.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, vol. 16. Australian National University, Canberra (2003)zbMATHGoogle Scholar
  23. 23.
    Romanuke, V.V.: Interval uncertainty reduction via division-by-2 dichotomization based on expert estimations for short-termed observations. J. Uncertain Syst. 12, 3–21 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Polish Naval AcademyGdyniaPoland

Personalised recommendations