Advertisement

Path Controller for Ships with Switching Approach

  • Mirosław TomeraEmail author
Conference paper
  • 79 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

The work presents the algorithm for controlling the movement of a ship along a desired route. The planned desired route for a moving ship was defined as a set of way-points connected by straight lines. The ship’s control is based on changes in the rudder angle, thus enabling the vessel to move along a given segment of the cruise route. The designed control algorithm is designed to minimize the heading error and cross-tracking error determined relative to the segment connecting two successive way-points. A different controller was used to minimize each of these errors. On the line segment, both controllers are switched on, while when there is a switch from one line segment to the next, only one controller is used, the one related to minimizing the course deviation. To obtain smooth control - after performing the return maneuver - make a skilful activation of the second controller, minimizing cross-tracking error. For this purpose, the control algorithm uses the appropriate switching logic with a scaled set signal from the controller minimizing the cross-tracking error. The performance quality of the developed algorithm for controlling the ship’s motion was tested on the training ship Blue Lady at the Ship Handling Research and Training Centre located on Lake Silm at Kamionka near Iława, Poland.

Keywords

Ship steering Underactuated control Track-keeping Experimental results 

References

  1. 1.
    Blomberg, A.E.A., Sæbø, T.O., Hansen, R.E., Pedersen, R.B., Austeng, A.: Automatic detection of marine gas seeps using an interferometric sidescan sonar. IEEE J. Oceanic Eng. 42(3), 590–602 (2017).  https://doi.org/10.1109/JOE.2016.2592559CrossRefGoogle Scholar
  2. 2.
    Caccia, M., Bibuli, M., Bono, R., Bruzzone, G., Bruzzone, G., Spirandelli, E.: Unmanned surface vehicle for coastal and protected waters applications: the Charlie project. Mar. Technol. Soc. J. 41(2), 62–71 (2007).  https://doi.org/10.4031/002533207787442259CrossRefGoogle Scholar
  3. 3.
    Choyekh, M., Kato, N., Short, T., Ukita, M., Yamaguchi, Y., Senga, H., Yoshie, M., Tanaka, T., Kobayashi, E., Chiba, H.: Vertical water column survey in the Gulf of Mexico using autonomous underwater vehicle SOTAB-I. Mar. Technol. Soc. J. 49(3), 88–101 (2015).  https://doi.org/10.4031/MTSJ.49.3.8CrossRefGoogle Scholar
  4. 4.
    Cornfield, S., Young, J.: Unmanned surface vehicles - game changing technology for naval operations. In: Roberts, G.N., Sutton, R. (eds.) Advances in Unmanned Marine Vehicles, pp. 311–328 (2006).  https://doi.org/10.1049/PBCE069E_ch15. Chapter 15
  5. 5.
    Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. In: Proceedings of the Sixth IFAC Conference Maneuvering and Control of Marine Crafts (MCMC), Girona, Spain, pp. 244–249. (2003).  https://doi.org/10.1016/S1474-6670(17)37809-6
  6. 6.
    Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New Jersey (2011)CrossRefGoogle Scholar
  7. 7.
    Fredriksen, E., Pettersen, K.Y.: Global \(\kappa \)-exponential way-point maneuvering of ships: theory and experiments. Automatica 42(4), 677–687 (2006).  https://doi.org/10.1016/j.automatica.2005.12.020MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Isa, K., Arshad, M., Ishak, S.: A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng. 81, 111–129 (2014).  https://doi.org/10.1016/j.oceaneng.2014.02.002CrossRefGoogle Scholar
  9. 9.
    Jorge, V.A.M., Granada, R., Maidana, R.G., Jurak, D.A., Heck, G., Negreiros, A.P.F., dos Santos, D.H., Gonçalves, L.M.G., Amory, A.M.: A Survey on unmanned surface vehicles for disaster robotics: main challenges and directions. Sensors 19(3), 702 (2019).  https://doi.org/10.3390/s19030702CrossRefGoogle Scholar
  10. 10.
    Lazarowska, A.: Research on algorithms for autonomous navigation of ships. WMU J. Marit. Aff. 18, 341–358 (2019)CrossRefGoogle Scholar
  11. 11.
    Lisowski, J.: The sensitivity of state differential game vessel traffic model. Pol. Marit. Res. 23(2), 14–18 (2016).  https://doi.org/10.1515/pomr-2016-0015CrossRefGoogle Scholar
  12. 12.
    Łebkowski, A.: Design of an autonomous transport system for coastal areas. TransNav: Int. J. Mar. Navig. Saf. Sea Transp. 12(1), 117–124 (2018).  https://doi.org/10.12716/1001.12.01.13CrossRefGoogle Scholar
  13. 13.
    MathWorks. Technical computing software for engineers and scientists. The MathWorks, Inc. http://www.mathworks.com
  14. 14.
    Mohamed-Seghir, M.: Computational intelligence method for ship trajectory planning. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 636–640 (2016).  https://doi.org/10.1109/MMAR.2016.7575210
  15. 15.
    Norgren, P., Skjetne, R.: Using autonomous underwater vehicles as sensor platforms for ice-monitoring. Model. Ident. Control 35(4), 263–277 (2014).  https://doi.org/10.4173/mic.2014.4.4CrossRefGoogle Scholar
  16. 16.
    Peng, Z., Wang, J., Wang, D.: Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling. IEEE/ASME Trans. Mechatron. 22(2), 1026–1036 (2017).  https://doi.org/10.1109/TMECH.2016.2632304MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pettersen, K.Y., Lefeber, E.: Way-point tracking control of ships. In: Proceedings of the 40th IEEE Conference Decision & Control, Orlando, Florida, USA, pp. 940–945 (2001).  https://doi.org/10.1109/CDC.2001.980230
  18. 18.
    Szyrowski, T., Sharma, S.K., Sutton, R., Kennedy, G.A.: Subsea cable tracking in an un-certain environment using particle filters. J. Mar. Eng. Technol. 14(1), 19–31 (2015).  https://doi.org/10.1080/20464177.2015.1022381CrossRefGoogle Scholar
  19. 19.
    Tomera, M.: Track-keeping of a physical model of the tanker along a specified route. Scientific J. Fac. Electr. Control Eng. Gdansk Uni. Technol. 51(2016), 201–208 (2016). (in Polish)Google Scholar
  20. 20.
    Tomera, M., Alfuth, Ł.: Way-point path controller for ships, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. Accepted for printing (2020)Google Scholar
  21. 21.
    Xiang, X., Jouvencel, B., Parodi, O.: Coordinated formation control of multiple autonomous underwater vehicles for pipeline inspection. Int. J. Adv. Robot. Syst. 7(1), 75–84 (2010).  https://doi.org/10.5772/7242CrossRefGoogle Scholar
  22. 22.
    Xiang, X., Yu, C., Zheng, J., Xu, G.: Motion forecast of intelligent underwater sampling apparatus - part I: design and algorithm. Indian J. Geo-Mar. Sci. 44(12), 1962–1970 (2015)Google Scholar
  23. 23.
    Zubowicz, T., Armiński, K., Witkowska, A., Śmierzchalski, R.: Marine autonomous surface ship - control system configuration. IFAC-PapersOnLine 52(8), 409–415 (2019).  https://doi.org/10.1016/j.ifacol.2019.08.100CrossRefGoogle Scholar
  24. 24.
    Zwierzewicz, Z.: Robust and adaptive ship path-following control design with the full vessel model. In: 24th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 121–126 (2019).  https://doi.org/10.1109/MMAR.2019.8864687

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Ship AutomationGdynia Maritime UniversityGdyniaPoland

Personalised recommendations