Advertisement

Robust Economic Model Predictive Control of Drinking Water Transport Networks Using Zonotopes

Conference paper
  • 382 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)

Abstract

A robust economic Model Predictive Control (EMPC) approach is presented in this paper for the control of a Drinking Water Network (DWN) albeit the presence of uncertainties in the forecasted demands required for the predictive control design. The uncertain forecasted demand on the nominal MPC has the possibility of rendering the optimization process infeasible or degrade the controller performance. In this paper, the uncertainty on demand is considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated to ensure robust constraint satisfaction, performance and stability of the MPC for DWN to meet user requirements whilst ensuring lower operational cost for water utility operators.

Keywords

Model predictive control Economic control Robustness Drinking water network Zonotopes 

References

  1. 1.
    Grosso, J., Ocampo-Martinez, C., Puig, V., Limon, D., Pereira, M.: Economic MPC for the management of drinking water networks. In: 2014 European Control Conference (ECC), pp. 2739–2744 (2014)Google Scholar
  2. 2.
    Pereira, M., Muñoz, D.P., Limon, D.: Robust economic model predictive control of a community micro-grid. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 2739–2744 (2017)Google Scholar
  3. 3.
    Le, V., Stoica, M., Alamo, T.: Zonotopes; From Guaranteed State Estimation to Control. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  4. 4.
    Cembrano, G., Quevedo, J., Puig, V., Pérez, R., Figueras, J., Escaler, I., Ramón, G., Barnet, G., Rodríguez, P., Casas, M.: A generic tool for real-time operational predictive optimal control of water networks. J. Int. Assoc. Water Pollut. Res. 64(2), 448–459 (2011)Google Scholar
  5. 5.
    Wang, Y., Puig, V., Cembrano, G.: Non-linear economic model predictive control of water distribution networks. J. Process Control 55(6), 23–34 (2017)CrossRefGoogle Scholar
  6. 6.
    Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, vol. 245, pp. 207–226. Springer, London (1999)CrossRefGoogle Scholar
  7. 7.
    Puig, V., Escobet, T., Sarrate, R., Quevedo, J.: Fault diagnosis and fault tolerant control in critical infrastructure systems. In: Kyriakides, E., Polycarpou, M. (eds.) Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems. Studies in Computational Intelligence, vol. 565, pp. 263–299. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Velarde, P., Maestre, J.M., Ocampo-Martinez, C., Bordons, C.: Application of robust model predictive control to a renewable hydrogen-based microgrid. In: 2016 European Control Conference (ECC), pp. 1209–1214 (2016)Google Scholar
  9. 9.
    Löfberg, J.: Min-max approaches to robust model predictive control. Linköping Studies in Science and Technology. Dissertations (2003)Google Scholar
  10. 10.
    Grosso, J.M., Velarde, P., Ocampo-Martinez, C., Maestre, J.M., Puig, V.: Stochastic model predictive control approaches applied to drinking water networks. Optim. Control Appl. Methods 38(4), 541–558 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jain, T., Yamé, J.J.: IEEE Trans. Sustain. Energy 4(4), 1696–1704 (2019)CrossRefGoogle Scholar
  12. 12.
    Durand, H., Christofides, P.D.: Economic model predictive control for nonlinear processes incorporating actuator magnitude and rate of change constraints. In: 2016 American Control Conference (ACC), pp. 5068–5074 (2016)Google Scholar
  13. 13.
    Angeli, D., Amrit, R., Rawlings, J.B.: On average performance and stability of economic model predictive control. IEEE Trans. Autom. Control 57(7), 1615–1626 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, Y., Puig, V., Cembrano, G.: Non-linear economic model predictive control of water distribution networks. J. Process Control 56(8), 23–34 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Puig, V., Cembrano, G.: Economic model predictive control with nonlinear constraint relaxation for the operational management of water distribution networks. Energies 11(4), 991–999 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Advanced Control Systems GroupTechnical University of Catalonia (UPC)TerrassaSpain

Personalised recommendations