Network-Based Approach to Increase Logical Reliability of a Vehicle E/E-Architecture

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The increasing number of functions in vehicles and their intensive interdependencies leads to a more complex e/e-architecture. This complexity increases the probability of error and influences system reliability significantly. Therefore, it is necessary to detect risks at early stages. In course of this, new methods are needed to carry out a reliability-oriented transfer of logical functions to the technical architecture. This paper presents an approach that derives a set of key figures for assessing logical reliability of functional concepts by using metrics from network theory. For this purpose, a control loop is introduced. After the functional design in a model-based environment, suitable metrics are applied. Based on the reference criterion Survival Probability, structural metrics are interpreted. With reference to the structural indicators, action strategies can be traced back to system model to increase logical reliability. First results showed that the logical reliability of functional concepts were improved by conceptual adjustments and partitioning recommendations.


Logical reliability Network theory E/E-architecture Fault Tree Analysis 


  1. 1.
    Nörenberg, R.: Effizienter Regressionstest von E/E-Systemen nach ISO 26262. KIT Scientific Publishing, Karlsruhe (2012)Google Scholar
  2. 2.
    Fritzsche, R.: Erstellung von Parameter-Diagrammen in der Automobilindustrie. ATZ-Automobiltechnische Zeitschrift 108, 492–497 (2006)CrossRefGoogle Scholar
  3. 3.
    Fowler, M.: Refactoring: Improving the Design of Existing Code, 9th edn, p. 431. Addison-Wesley, Boston (2002)zbMATHGoogle Scholar
  4. 4.
    Chamas, M.W., Paetzold, K.: Modeling of requirement-based effect chains of mechatronic systems in conceptual stage. IJEETC 7, 127–134 (2018)Google Scholar
  5. 5.
    Maurer, M.: Structural awareness in complex product design. Zugl.: München, Techn. Univ., Diss, 2007, Verl. Dr. Hut, München (2007)Google Scholar
  6. 6.
    Verein Deutscher Ingenieure: Zuverlässigkeitskenngrößen: Verfügbarkeitskenngrößen (VDI4004). Beuth Verlag (1986)Google Scholar
  7. 7.
    Cottin, C., Döhler, S.: Auswahl und Überprüfung von Modellen. In: Risikoanalyse, pp. 309–368. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Ponn, J.: Absicherung der technischen Entwicklungsziele. In: Lindemann, U. (ed.) Handbuch Produktentwicklung, pp. 805–836. Hanser, München (2016)CrossRefGoogle Scholar
  9. 9.
    Bertsche, B., Stohrer, M.: Zuverlässigkeit und Sicherheit. In: Lindemann, U. (ed.) Handbuch Produktentwicklung. Hanser, München (2016)Google Scholar
  10. 10.
    Alt, O.: Modellbasierte Systementwicklung mit SysML. Carl Hanser Fachbuchverlag, München (2012)CrossRefGoogle Scholar
  11. 11.
    Biggs, G., Sakamoto, T., Kotoku, T.: A profile and tool for modelling safety information with design information in SysML. Softw. Syst. Model. 15(1), 147–178 (2014). Scholar
  12. 12.
    Cressent, R., Idasiak, V., Kratz, F., David, P.: Mastering safety and reliability in a model based process. In: 2011 Proceedings-Annual Reliability and Maintainability Symposium. IEEE (2011)Google Scholar
  13. 13.
    Kurtoglu, T., Tumer, I.Y., Jensen, D.C.: A functional failure reasoning methodology for evaluation of conceptual system architectures. Res. Eng Design 21(4), 209–234 (2010)CrossRefGoogle Scholar
  14. 14.
    Chahin, A., Paetzold, K., Peterit, P., Grunow, C.: An approach for using the FMEA for the development of a new and revolutionary rotation piston engine. In: DS 85–2: Proceedings of NordDesign 2016, Trondheim, Norway, vol. 2, pp. 53–61 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BMW GroupMunichGermany
  2. 2.University of the Bundeswehr MunichNeubibergGermany
  3. 3.University of PaderbornPaderbornGermany

Personalised recommendations