Discrete-Time Active Disturbance Rejection Control: A Delta Operator Approach

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The extended state observer (ESO) is a key component in any active disturbance rejection control (ADRC) scheme. Its discrete implementation is thus crucial in practical applications. In this paper, a discrete delta operator ESO is introduced and analyzed. As a starting point, a discrete shift operator ESO is used for transformation from continuous-time to delta operator discrete-time. A quantitative comparison between shift operator and delta operator ESOs (with different sampling time \(\varDelta \)[s]) is conducted here using a servomechanism system. The obtained numerical results show the proposed delta operator observer to work better than the shift operator observer in certain aspects.


ADRC Discrete extended state observer Delta operator 


  1. 1.
    Cortés-Romero, J., Luviano-Juárez, A., Sira-Ramírez, H.: A delta operator approach for the discrete-time active disturbance rejection control on induction motors. Math. Prob. Eng. 2013, 9 (2013)MathSciNetGoogle Scholar
  2. 2.
    Feuer, A., Goodwin, G.: Sampling in Digital Signal Processing and Control. Springer Science & Business Media (2012)Google Scholar
  3. 3.
    Goodwin, G.C., Middleton, R.H., Poor, H.V.: High-speed digital signal processing and control. Proc. IEEE 80(2), 240–259 (1992)CrossRefGoogle Scholar
  4. 4.
    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)CrossRefGoogle Scholar
  5. 5.
    Herbst, G.: Practical active disturbance rejection control: bumpless transfer, rate limitation, and incremental algorithm. IEEE Trans. Industr. Electron. 63(3), 1754–1762 (2016)CrossRefGoogle Scholar
  6. 6.
    Luviano-Juárez, A., Cortés-Romero, J., Sira-Ramírez, H.: Algebraic identification and control of an uncertain DC motor using the delta operator approach. In: International Conference on Electrical Engineering Computing Science and Automatic Control, pp. 482–487 (2010)Google Scholar
  7. 7.
    Madonski, R., Herman, P.: On the usefulness of higher-order disturbance observers in real control scenarios based on perturbation estimation and mitigation. In: International Workshop on Robot Motion and Control, pp. 252–257 (2013)Google Scholar
  8. 8.
    Middleton, R.H., Goodwin, G.C.: Digital Control and Estimation: A Unified Approach. Prentice Hall, Englewood Cliffs (1990)zbMATHGoogle Scholar
  9. 9.
    Miklosovic, R., Radke, A., Gao, Z.: Discrete implementation and generalization of the extended state observer. In: American Control Conference, pp. 1–6 (2006)Google Scholar
  10. 10.
    Neuman, C.P.: Properties of the delta operator model of dynamic physical systems. IEEE Trans. Syst. Man Cybern. 23(1), 296–301 (1993)CrossRefGoogle Scholar
  11. 11.
    Shor, M., Perkins, W.: Reliable control in the presence of sensor/actuator failures: a unified discrete/continuous approach. In: Conference on Decision and Control, pp. 1601–1606 (1991)Google Scholar
  12. 12.
    Sira-Ramirez, H., Luviano-Juárez, A., Ramírez-Neria, M., Zurita-Bustamante, E.W.: Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach. Butterworth-Heinemann (2018)Google Scholar
  13. 13.
    Villafuerte, R., Mondié, S., Garrido, R.: Tuning of proportional retarded controllers: theory and experiments. IEEE Trans. Control Syst. Technol. 21(3), 983–990 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mechatronics DepartmentUniversidad Politecnica del Valle de MexicoTultitlan Estado de MéxicoMexico
  2. 2.UPIITA-IPNMexico CityMexico
  3. 3.Energy Electricity Research Center, International Energy CollegeJinan UniversityZhuhaiP. R. China

Personalised recommendations