The Concept of the Control System for the A-EVE Autonomous Electric Vehicle

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1196)


The article describes the concept of the control system for the prototype EVE autonomous electric vehicle. The developed design of the control system for an autonomous vehicle consists of several subsystems whose correct operation, appropriate data exchange, and properly selected and configured low-level and high-level control algorithms allow its implementation in autonomous driving tasks. The article described individual subsystems of the control scheme, such as: the measurement system, low-level and high-level control system, and also the safety system which guarantees safe operation of the EVE autonomous vehicle.


Autonomous Autonomous vehicle Electrical vehicle Control systems 


  1. 1.
    Behringer, R., Sundareswaran, S., Gregory, B., Elsley, R., Addison, B., Guthmiller, W., Daily, R., Bevly, D.: The darpa grand challenge - development of an autonomous vehicle. In: IEEE Intelligent Vehicles Symposium 2004, pp. 226–231 (2004).
  2. 2.
    Cheng, H.: Autonomous intelligent vehicles: theory, algorithms, and implementation. In: Advances in Computer Vision and Pattern Recognition. Springer, London (2011).
  3. 3.
    Fletcher, L., Teller, S., Olson, E., Moore, D., Kuwata, Y., How, J., Leonard, J., Miller, I., Campbell, M., Huttenlocher, D., Nathan, A., Kline, F.R.: The MIT-Cornell collision and why it happened. J. Field Rob. 25(10), 775–807 (2008).
  4. 4.
    Jo, K., Kim, J., Kim, D., Jang, C., Sunwoo, M.: Development of autonomous Car–Part 1: distributed system architecture and development process. IEEE Trans. Industr. Electron. 61(12), 7131–7140 (2014). Scholar
  5. 5.
    Jo, K., Kim, J., Kim, D., Jang, C., Sunwoo, M.: Development of autonomous Car–Part 2: a case study on the implementation of an autonomous driving system based on distributed architecture. IEEE Trans. Industr. Electron. 62(8), 5119–5132 (2015). Scholar
  6. 6.
    Komorkiewicz, M., Kryjak, T., Chuchacz-Kowalczyk, K., Skruch, P., Gorgoń, M.: FPGA based system for real-time structure from motion computation. In: 2015 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 1–7 (2015).
  7. 7.
    Komorkiewicz, M., Turek, K., Skruch, P., Kryjak, T., Gorgon, M.: FPGA-based hardware-in-the-loop environment using video injection concept for camera-based systems in automotive applications. In: 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 183–190 (2016).
  8. 8.
    Markiewicz, P., Kogut, K., Róźewicz, M., Skruch, P., Starosolski, R.: Occupancy grid fusion prototyping using utomotive virtual validation environment. In: Proceedings of the 6th International Conference on Control, Mechatronics and Automation - ICCMA 2018 (2018).
  9. 9.
    Mitkowski, W., Zagórowska, M., Bauer, W.: Comparative analysis of dc motor control system. Appl. Mech. Mater. 817, 111–121 (2016).
  10. 10.
    Noviello, C.: Masterig STM32. Leanpub (2018)Google Scholar
  11. 11.
    Oprzedkiewcz, K., Mitkowski, W., Gawin, E.: The PLC implementation of fractional-order operator using CFE approximation. Adv. Intell. Syst. Comput., 22–33 (2017).
  12. 12.
    Pérez, J., Milanés, V., Onieva, E.: Cascade architecture for lateral control in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 12(1), 73–82 (2011). Scholar
  13. 13.
    Quigley, M., Gerkey, B., Smart, W.: Programming Robots with ROS: A Practical Introduction to the Robot Operating System. O’Reilly Media (2015).
  14. 14.
    Roman, M.: Design and implementation of autonomous vehicle controller compatible with ROS. Master’s thesis, AGH University of Science and Technology (2019)Google Scholar
  15. 15.
    Skruch, P., Długosz, M., Mitkowski, W.: Mathematical methods for verification of microprocessor-based PID controllers for improving their reliability. Eksploatacja i Niezawodność 17(3), 327–333 (2015)CrossRefGoogle Scholar
  16. 16.
    Straszheim, T., Gerkey, B., Cousins, S.: The ros build system. IEEE Rob. Autom. Mag. 18(2), 18–122 (2011). Scholar
  17. 17.
    Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: the robot that won the DARPA grand challenge. J. Field Rob. 23(9), 661–692 (2006).
  18. 18.
    Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., Ferguson, D., Darms, M.: Autonomous driving in traffic: boss and the urban challenge. AI Mag. 30(2), 17 (2009).
  19. 19.
    Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control systems – a review of decision making. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225(2), 155–195 (2011).
  20. 20.
    Xu, L., Wang, Y., Sun, H., Xin, J., Zheng, N.: Design and implementation of driving control system for autonomous vehicle. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 22–28 (2014).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations