Advertisement

Structure and Corrosion Resistance of Vacuum-Arc Multi-period CrN/Cu Coatings

  • Hanna PostelnykEmail author
  • Oleg Sobol
  • Ondrej Chocholaty
  • Sergey Knyazev
Conference paper
  • 104 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The influence of deposition conditions (pressure, bias potential, layer thickness) on the structure and corrosion resistance of vacuum-arc multi-period CrN/Cu coatings is studied. For research, we used the methods of precision XRD, scanning electron microscopy with energy dispersive microanalysis, impedance spectroscopy, and potentiodynamic polarization tests to detect corrosion resistance in a solution of 0.9% NaCl. According to structural studies, phases with an fcc crystal lattice are formed in the layers: Cu and CrN mononitride. In CrN layers obtained at the highest bias potential of –200 V, a change in the lattice period associated with the action of compression stresses was revealed. Tests for corrosion resistance showed that for all the samples studied, the corrosion process has a predominantly anodic reaction. The most corrosion-resistant coatings are those obtained at a pressure of 5·10−4 Torr and the greatest bias potential of −200 V in constant rotation mode. The feature of such coatings is the smallest thickness of copper and CrN layers (about 8 nm), the presence of compression stresses (which enhances adhesion between the layers), and the absence of a pronounced texture (the paths of easy diffusion are minimized).

Keywords

Composite coatings Bias potential Phase composition Corrosion rate Polarization curves Electrochemical impedance spectroscopy 

References

  1. 1.
    Sobol’, O.V., Andreev, A.A., Gorban’, V.F., Stolbovoy, V.A., Meylekhov, A.A., Postelnyk, A.A.: Possibilities of structural engineering in multilayer vacuum-arc ZrN/CrN coatings by varying the nanolayer thickness and application of a bias potential. Tech. Phys. 61(7), 1060–1063 (2016)CrossRefGoogle Scholar
  2. 2.
    Öztürk, A., Ezirmik, K.V., Kazmanlı, K., Ürgen, M., Eryılmazb, O.L., Erdemirb, A.: Comparative tribological behaviors of TiN, CrN and MoNCu nanocomposite coatings. Tribol. Int. 41(1), 49–59 (2008)CrossRefGoogle Scholar
  3. 3.
    Polychronopoulou, K., Rebholz, C., Demas, N.G., Polycarpou, A.A., Gibson, P.N.: Effect of Cu content on the tribological performance of Cr-N coatings at high temperatures (840°C). In: ASME/STLE 2009 International Joint Tribology Conference, pp. 115–117 (2009)Google Scholar
  4. 4.
    Conde, A., Navas, C., Cristóbal, A.B., Housden, J., de Damborenea, J.: Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings. Surf. Coat. Technol. 201(6), 2690–2695 (2006)CrossRefGoogle Scholar
  5. 5.
    Dinu, M., Mouele, S.M., Parau, A.C., Vladescu, A., Petrik, L.F., Braic, M.: Enhancement of the corrosion resistance of 304 stainless steel by Cr–N and Cr(N, O) coatings. Coatings 8(132), 1–20 (2018)Google Scholar
  6. 6.
    Martinez, E., Romero, J., Lousa, A., Esteve, J.: Wear behavior of nanometric CrN/Cr multilayers. Surf. Coat. Technol. 163–164, 571–577 (2003)CrossRefGoogle Scholar
  7. 7.
    Wang, Q., Zhou, F., Wang, C., Yuen, M.F., Wang, M., Qian, T., Matsumoto, M., Yan, J.: Comparison of tribological and electrochemical properties of TiN, CrN, TiAlN and a-C: H coatings in simulated body fluid. Mater. Chem. Phys. 158, 74–81 (2015)CrossRefGoogle Scholar
  8. 8.
    Hsu, C.H., Huang, C.K., Ou, K.L.: Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti, Cr)N coating. Surf. Coat. Technol. 231, 380–384 (2013)CrossRefGoogle Scholar
  9. 9.
    Sun, Y., Rana, V.: Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Mater. Chem. Phys. 129, 138–147 (2011)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.J., Byun, T.J., Lee, H.Y., Han, J.G.: Effect of bilayer period on CrN/Cu nanoscale multilayer thin films. Surf. Coat. Technol. 202, 5508–5511 (2008)CrossRefGoogle Scholar
  11. 11.
    Niu, Y., Wei, J., Yu, Z.: Microstructure and tribological behavior of multilayered CrN coating by arc ion plating. Surf. Coat. Technol. 275, 332–340 (2015)CrossRefGoogle Scholar
  12. 12.
    Sobol, O.V., Andreev, A.A., Gorban, V.F., Meylekhov, A.A., Postelnyk, A.A., Stolbovoy, V.A.: Structural engineering of the vacuum arc ZrN/CrN multilayer coatings. J. Nano Electron. Phys. 10, 06030-1–06030-5 (2018)CrossRefGoogle Scholar
  13. 13.
    Sobol’, O.V., Postelnyk, A.A., Meylekhov, A.A., Andreev, A.A., Stolbovoy, V.A., Gorban, V.F.: Structural engineering of the multilayer vacuum arc nitride coatings based on Ti, Cr, Mo and Zr. J. Nano Electron. Phys. 9(3), 03003-1–03003-6 (2017)CrossRefGoogle Scholar
  14. 14.
    Osés, J., García Fuentes, G., Fernández Palacio, J., Esparza, J., Antonio García, J., Rodríguez, R.: Antibacterial functionalization of PVD coatings on ceramics. Coatings 8(5), 197–208 (2018)CrossRefGoogle Scholar
  15. 15.
    Schmitz, T.: Functional coatings by physical vapor deposition (PVD) for biomedical applications. Würzburg (2016)Google Scholar
  16. 16.
    Kuppusami, P., Elangovan, T., Murugesan, S., Thirumurugesan, R., Khan, S., George, R.P., Ramaseshan, R., Divakar, R., Mohandas, E., Mangalaraj, D.: Microstructural, nanomechanical and antibacterial properties of magnetron sputtered nanocomposite thin films of CrN/Cu. Surf. Eng. 28, 134–140 (2012)CrossRefGoogle Scholar
  17. 17.
    Martinez, E., Sanjines, R., Karimi, A., Esteve, J., Levy, F.: Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films. Surf. Coat. Technol. 180–181, 570–574 (2004)CrossRefGoogle Scholar
  18. 18.
    Benkahoul, M., Robin, P., Martinu, L., Klemberg-Sapieha, J.E.: Tribological properties of duplex Cr–Si–N coatings on SS410 steel. Surf. Coat. Technol. 203, 934–940 (2009)CrossRefGoogle Scholar
  19. 19.
    Sobol’, O.V., Shovkoplyas, O.A.: On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Tech. Phys. Lett. 39(6), 536–539 (2013)CrossRefGoogle Scholar
  20. 20.
    Ramoul, C., Beliardouh, N.E., Bahi, R., Nouveau, C., Abdelghani, D., Walock, A.: Surface performances of PVD ZrN coatings in biological environments. Tribol. Mater. Surf. Interfaces 13, 12–19 (2018)CrossRefGoogle Scholar
  21. 21.
    Montesano, L., Gelfi, M., Pola, A., Colombi, P., La Vecchia, G.M.: Corrosion resistance of CrN PVD coatings: comparison among different deposition techniques La. Metallurgia Italiana 2, 3–11 (2013)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine
  2. 2.University of West BohemiaPilsenCzech Republic

Personalised recommendations