Advertisement

Modeling of Spindle Node Dynamics Using the Spectral Analysis Method

  • Oleg KrolEmail author
  • Volodymyr Sokolov
Conference paper
  • 105 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article discusses the study of the elastic system dynamics for spindle assembly of drilling-milling-boring machining center type. A three-dimensional model of the spindle assembly on rolling bearings is built. A constructive and design diagram of the spindle assembly and a system of forces acting in the process of milling workpieces are formed. The statement on the polyharmonic nature of the input power effect change during the milling process is substantiated. The phenomenon of modeling disturbing effects by superimposing a “white noise” type random component in the MatLab software environment is investigated. The synthesized input signal and its spectral density using the method of Fast Fourier Transform in a Signal Processing environment are obtained. The concept of the spectral windows for increasing the information content of the obtained dynamic characteristics and reducing the variance of frequency estimates is analyzed. The selection of the best spectral window is carried out, with the help of which the distortion of spectral estimates is minimized.

Keywords

Spindle node Frequency response data Spectral windows 

References

  1. 1.
    Avramova, T.M., Bushuev, V.V., Gilova, L.Ya.: Handbook on Metal-Cutting Machine Tools. Mechanical Engineering, Moscow (2012)Google Scholar
  2. 2.
    Khomyakov, S., Kochinev, N., Sabirov, F.: Simulation and experimental study of the dynamics for spindle nodes characteristics. Izvestiya of TSU 3, 251–258 (2011)Google Scholar
  3. 3.
    Push, A.V., Zverev, I.A.: Spindle Nodes. Designing and Research. Stankin, Moscow (2000)Google Scholar
  4. 4.
    Krol, O., Sokolov, V.: Modelling of spindle nodes for machining centers. J. Phys. Conf. Ser. 1084, 012007 (2018)CrossRefGoogle Scholar
  5. 5.
    Krol, O., Sokolov, V.: Modeling carrier system dynamics for metal-cutting machines. In: International Russian Automation Conference (RusAutoCon) 2018, Sochi, pp. 1–5. IEEE (2018)Google Scholar
  6. 6.
    Popov, V.A., Loktev, V.A.: Dynamics of Machines. Technique, Kiev (1975)Google Scholar
  7. 7.
    Khanov, A.M., Kobityansky, A.E., Shafranov, A.V.: The study of the dynamics of spindle assemblies of machines based on mathematical modeling. Bull. Perm State Tech. Univ. Eng. 14(2), 27–33 (2012)Google Scholar
  8. 8.
    Vasilevich, Yu., Dovnar, S., Shumsky, I.: Modal analysis of the carrier system. Sci. Life 4, 14–24 (2014)Google Scholar
  9. 9.
    Urbikain, G., Campa, F., Zulaika, J.: Preventing chatter vibration in heavy-duty turning operations in large horizontal lathes. Sound Vib. 340, 317–321 (2015)CrossRefGoogle Scholar
  10. 10.
    Türkeş, E.: Chatter stability analysis approach for stability analysis of rotating machinery vibrations. J. Eng. Sci. 3, 1–17 (2017)Google Scholar
  11. 11.
    Brecher, C., Fey, M., Daniel, M.: Modeling of position-, tool- and workpiece-dependent milling machine dynamics. High Speed Mach. 2, 15–25 (2016)Google Scholar
  12. 12.
    Brecher, C., Bäumler, S., Daniels, M.: Prediction of dynamics of modified machine tool by experimental substructuring. In: Proceedings of the IMAC, pp. 297–305 (2014)Google Scholar
  13. 13.
    Kong, J., Cheng, X.: Modal analysis of CNC lathe’s spindle based on finite element. Adv. Eng. Res. (AER) 148, 318–321 (2017)Google Scholar
  14. 14.
    Krol, O., Sokolov, V.: Parametric modeling of gear cutting tools. In: Gapinski, B., et al. (eds.) Advances in Manufacturing II 2019. LNME, vol. 4, pp. 3–11. Springer, Cham (2019)Google Scholar
  15. 15.
    Ivanov, V., Dehtiarov, I., Pavlenko, I., Kosov, M., Hatala, M.: Technological assurance and features of fork-type parts machining. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II, DSMIE 2019. LNME, pp. 114–125. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_12CrossRefGoogle Scholar
  16. 16.
    Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, M., Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II, DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_76CrossRefGoogle Scholar
  17. 17.
    Pronikov, A.S.: Design of metal-cutting machine tools and machine systems. Mechanical Engineering, Moscow (1995)Google Scholar
  18. 18.
    Chermensky, O., Fedotov, N.: Rolling bearings. Mechanical Engineering, Moscow (2003)Google Scholar
  19. 19.
    Balmont, V.B.: Calculations of High-Speed Spindle Units. VNIITEMR, Moscow (1987)Google Scholar
  20. 20.
    Vasilkov, D.V., Weitz, V.L., Shirtladze, A.G.: Electromechanical Drives of Metalworking Machines. Calculation and Design: Textbook. Polytechnic, St. Petersburg (2011)Google Scholar
  21. 21.
    Strutinsky, V.B.: Mathematical Modeling of Processes and Systems of Mechanics: A Textbook. ZhITI, Zhytomyr (2001)Google Scholar
  22. 22.
    Strutinsky, V.B., Melnychuk, P.P.: Mathematical Modeling of Metal-Cutting Machines: Monograph. ZhITI, Zhytomyr (2002)Google Scholar
  23. 23.
    Bendat, J., Pirsol, A.: Applied Analysis of Random Data. Mir, Moscow (1989)Google Scholar
  24. 24.
    Solodovnikov, A., Spivakovsky, A.: Fundamentals of the Theory and Methods for Spectral Information Processing. LSU, Leningrad (1986)Google Scholar
  25. 25.
    MATLAB: User’s Guided for MS-DOS Personal Computers. The Math Works, Jnk. (1989)Google Scholar
  26. 26.
    Stentsel, Y., Porkuian, O., Litvinov, K., Sotnikova, T.: Studying additional measurement errors for control tools using an integral functional method. East.-Eur. J. Enterp. Technol. 3(5(99)), 36–43 (2019)Google Scholar
  27. 27.
    Sokolov, V., Krol, O., Stepanova, O.: Choice of correcting link for electrohydraulic servo drive of technological equipment. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II, DSMIE 2019. LNME, pp. 702–710. Springer, Cham (2020)CrossRefGoogle Scholar
  28. 28.
    Gasanov, M., Kotliar, A., Basova, Y., Ivanova, M., Panamariova, O.: Increasing of lathe equipment efficiency by application of gang-tool holder. In: Gapiński, B., Szostak, M., Ivanov, V. (eds.) Advances in Manufacturing II, MANUFACTURING 2019. LNME, vol. 4, pp. 114–125. Springer, Cham (2019)Google Scholar
  29. 29.
    Krol, O., Sokolov, V.: Parametric modeling of transverse layout for machine tool gearboxes. In: Gapinski, B., et al. (eds.) Advances in Manufacturing II. LNME, vol. 4, pp. 122–130. Springer, Cham (2019)CrossRefGoogle Scholar
  30. 30.
    Krol, O., Sokolov, V.: 3D modelling of angular spindle’s head for machining centre. J. Phys. Conf. Ser. 1278, 012002 (2018)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Volodymyr Dahl East Ukrainian National UniversitySeverodonetskUkraine

Personalised recommendations