Advertisement

On Comparison of Multiserver Systems with Exponential-Pareto Mixture Distribution

  • Irina PeshkovaEmail author
  • Evsey MorozovEmail author
  • Maria MaltsevaEmail author
Conference paper
  • 61 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1231)

Abstract

Mixture models arise when at least two different distributions of data sets are presented. In this paper, we introduce the upper and lower bounds for the steady-state performance of a multiserver model of the network node, with Exponential-Pareto mixture distribution of service times. We use the failure rate and stochastic comparison techniques together with coupling of random variables to establish some monotonicity properties of the model. These theoretical results are illustrated by numerical simulation of GI/G/N queueing systems.

Keywords

Failure rate comparison Multiserver system Queue size estimation Finite mixture distribution 

References

  1. 1.
    Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003).  https://doi.org/10.1007/b97236. 439 p\({\rm {.}}\)CrossRefzbMATHGoogle Scholar
  2. 2.
    Asmussen, S., Glynn, P.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-69033-9. 476 p\({\rm {.}}\)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aven, T., Jensen, U.: Stochastic Models in Reliability. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-7894-2. 297 p\({\rm {.}}\)CrossRefzbMATHGoogle Scholar
  4. 4.
    Berger, A., Whitt, W.: Comparisons of multi-server queues with finite waiting rooms. Stoch. Models 8(4), 719–732 (1992).  https://doi.org/10.1080/15326349208807248MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goldie, C., Klüppelberg, C.: Subexponential distributions. In: A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tails, pp. 435–459. Birkhäuser, Cambridge (1998)Google Scholar
  6. 6.
    Al-Hussaini, E.K., Sultan, K.S.: Reliability and hazard based on finite mixture models. In: Advances in Reliability, Handbook of Statistics, vol. 20, pp. 139–183 (2001).  https://doi.org/10.1016/S0169-7161(01)20007-8
  7. 7.
    Mclachlan, G.I., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics. Applied Probability and Statistics Section. Wiley, New York (2001).  https://doi.org/10.1002/0471721182CrossRefzbMATHGoogle Scholar
  8. 8.
    Marshall, A., Olkin, I.: Life Distributions: Structure of Nonparametric, Semiparametric and Parametric Families. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-68477-2. 783 p\(\rm {.}\)CrossRefzbMATHGoogle Scholar
  9. 9.
    Morozov, E., Peshkova, I., Rumyantsev, A.: On failure rate comparison of finite multiserver systems. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 419–431. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-36614-8_32CrossRefGoogle Scholar
  10. 10.
    Morozov, E., Nekrasova, R., Peshkova, I., Rumyantsev, A.: A regeneration-based estimation of high performance multiserver systems. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) CN 2016. CCIS, vol. 608, pp. 271–282. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39207-3_24CrossRefGoogle Scholar
  11. 11.
    Morozov, E., Peshkova, I., Rumyantsev, A.: On regenerative envelopes for cluster model simulation. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 222–230. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-51917-3_20CrossRefGoogle Scholar
  12. 12.
    Ross, S., Shanthikumar, J.G., Zhu, Z.: On increasing-failure-rate random variables. J. Appl. Probab. 42(3), 797–809 (2005).  https://doi.org/10.1239/jap/1127322028MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shedler, G.S.: Regeneration and Networks of Queues. Sprigner, New York (1987).  https://doi.org/10.1007/978-1-4612-1050-4. 224 p\(\rm {.}\)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shedler, G.S.: Regenerative Stochastic Simulation. Academic Press Inc., Burlington (1992). https://www.elsevier.com/books/regenerative-stochastic-simulation/shedler/978-0-08-092572-1. 400 p\(\rm {.}\)zbMATHGoogle Scholar
  15. 15.
    Sigman, K., Wolff, R.W.: A review of regenerative processes. SIAM Rev. 35(2), 269–288 (1993).  https://doi.org/10.1137/1035046MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sonderman, D.: Comparing multi-server queues with finite waiting rooms, I: same number of servers. Adv. Appl. Probab. 11(2), 439–447 (1979).  https://doi.org/10.2307/1426848MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sonderman, D.: Comparing multi-server queues with finite waiting rooms, II: different number of servers. Adv. Appl. Probab. 11(2), 448–455 (1979).  https://doi.org/10.2307/1426849MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)CrossRefGoogle Scholar
  19. 19.
    Whitt, W.: Comparing counting processes and queues. Adv. Appl. Probab. 13(1), 207–220 (1981).  https://doi.org/10.2307/1426475MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Petrozavodsk State UniversityPetrozavodskRussia
  2. 2.Institute of Applied Mathematical Research of the Karelian research Centre of RASPetrozavodskRussia
  3. 3.Moscow Center for Fundamental and Applied MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations