Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung

  • Alexandr RassadinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12132)


In this work we present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung. Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation. This solution was evaluated within the LNDb 2020 medical imaging challenge and produced the best nodule segmentation result on the final leaderboard.


Deep learning Medical imaging Semantic segmentation U-Net 



We are grateful to for support of the research and Andrey Savchenko for his assistance in preparation of this paper.


  1. 1.
    Pedrosa, J., et al.: LNDb: a lung nodule database on computed tomography. arXiv preprint arXiv:1911.08434 (2019)
  2. 2.
    MacMahon, H., et al.: Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology 284(1), 228–243 (2017)CrossRefGoogle Scholar
  3. 3.
    Graham, B., Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)
  4. 4.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597 (2015)
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
  6. 6.
    Lee, K., Zung, J., Li, P., Jain, V., Seung, H. S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)
  7. 7.
    Clevert, D. A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by Exponential Linear Units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
  8. 8.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  9. 9.
    Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)
  10. 10.
    Wolny, A., Cerrone, L., Kreshuk, A.: Accurate and versatile 3D segmentation of plant tissues at cellular resolution. bioRxiv preprint (2020)
  11. 11.
    Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. arXiv preprint arXiv:1807.06521 (2018)
  12. 12.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  13. 13.
    Luo, P., Ren, J., Peng, Z., Zhang, R., Li, J.: differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779 (2018)
  14. 14.
    Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNNs for fine-grained visual recognition. arXiv preprint arXiv:1504.07889 (2015)
  15. 15.
    Sudre, C., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv preprint arXiv: 1707.03237 (2017)Google Scholar
  16. 16.
    Dubey, S., Chakraborty, S., Roy, S., Chaudhuri, B.: diffGrad: an optimization method for convolutional neural networks. arXiv preprint arXiv:1909.11015 (2019)
  17. 17.
    Ding, J., Ren, X., Luo, R., Sun, X.: An adaptive and momental bound method for stochastic learning. arXiv preprint arXiv:1910.12249 (2019)
  18. 18.
    LNDb challenge evaluation page. Accessed 08 Feb 2020
  19. 19.
    Spitzer, R., Cohen, J., Fleiss, J., Endicott, J.: Quantification of agreement in psychiatric diagnosis: a new approach. Arch. Gen. Psychiatry 17(1), 83–87 (1967)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Xperience.aiNizhny NovgorodRussia

Personalised recommendations