Advertisement

Development of an Energy Recovery Device Based on the Dynamics of a Semi-trailer

  • Massimo Sicilia
  • Marco Claudio De SimoneEmail author
Conference paper
  • 36 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

A semi-trailer is a vehicle without a power unit, whose purpose is to carry goods and materials; semi-trailers differ one from another based on the type and weight of the transported goods. In this work, we analyzed the motion dynamics of a generic articulated vehicle and developed a rigid multibody model. First, we analyzed mathematical models from literature to understand the vehicle’s dynamic; secondly, we created a 3D model, based on theoretical background and typical constructive solutions; finally, we launched multibody simulations in a multi-domain environment SimScape. The results were used to evaluate the obtainable electric energy harvesting part of semi-trailer wheels’ rotational kinetic energy; finally, the electric power would be stored into a battery. Having an energy recovery system mounted directly on the semi-trailer would result in great benefits both for the costs and for the environmental impact: since every utility needs the engine to be always active, with an electric source we could power every utility of the semi-trailer without using the engine so that we could avoid the unnecessarily introduction of pollutants into the atmosphere.

Keywords

Heavy vehicle Dynamics Vehicle Multibody Fuel economy 

References

  1. 1.
    Naviglio, D., Formato, A., Scaglione, G., Montesano, D., Pellegrino, A., Villecco, F., Gallo, M.: Study of the grape cryo-maceration proceedings at difference temperatures. Foods 7(107) (2018)Google Scholar
  2. 2.
    Gao, L., Ma, F., Jin, C.: A model-based method for estimating the attitude of underground articulated vehicles. Sensors 19(23), 5245 (2019)CrossRefGoogle Scholar
  3. 3.
    Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)CrossRefGoogle Scholar
  4. 4.
    Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89, 1019–1045 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Simone, M.C., Rivera, Z.B., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6, 18 (2018)CrossRefGoogle Scholar
  6. 6.
    Bai, G., Meng, Y., Liu, L., Luo, W., Gu, Q., Li, K.: A new path tracking method based on multilayer model predictive control. Appl. Sci. 9(13), 2649 (2019)CrossRefGoogle Scholar
  7. 7.
    De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using arduino. UPB Sci. Bull. Ser. D 80, 141–154 (2018)Google Scholar
  8. 8.
    De Ruiter, A.: Optimal design of a hydro-elastic rear axle suspension for heavy trucks. Technische Unversiteit Eindhoven (1997)Google Scholar
  9. 9.
    Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11, 051009 (2016)CrossRefGoogle Scholar
  10. 10.
    Sena, P., Attianese, P., Carbone, F., Pellegrino, A., Pinto, A., Villecco, F.: A fuzzy model to interpret data of drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 868410 (2012)Google Scholar
  11. 11.
    De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46, 443–452 (2018)CrossRefGoogle Scholar
  12. 12.
    Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45, 578–584 (2017)CrossRefGoogle Scholar
  13. 13.
    Sena, P., D’Amore, M., Pappalardo, M., Pellegrino, A., Fiorentino, A., Villecco, F.: Studying the influence of cognitive load on driver’s performances by a fuzzy analysis of lane keeping in a drive simulation. IFAC Proc. 2013(46), 151–156 (2013)CrossRefGoogle Scholar
  14. 14.
    Gögen, E., Emre Özcan, K.: The effect of dolly suspension parameters to the european modular system vehicle combination. Eur. Mech. Sci. 2(4), 128–132 (2018)Google Scholar
  15. 15.
    Stoerkle, J.: Lateral dynamics of multiaxle vehicles. Diss. Master thesis, Institute for Dynamic Systems and Control, Swiss Federal Institute of Technology, Zürich, Switzerland 14(2) (2013)Google Scholar
  16. 16.
    Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81, 1841–1869 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sena, P., Attianese, P., Pappalardo, M., Villecco, F.: FIDELITY: fuzzy inferential diagnostic engine for on-line support to physicians. In: International Conference on the Development of Biomedical Engineering in Vietnam, pp. 396–400 (2012)Google Scholar
  18. 18.
    Spivey, C.: Analysis of ride quality of tractor semi-trailers. Clemson University All Theses, vol. 123 (2007)Google Scholar
  19. 19.
    Stoner, W. J.: Dynamic Simulation Methods for Evaluating Vehicle Configuration and Roadway Design, University of Iowa (1991)Google Scholar
  20. 20.
    Adamiec-Wójcik, I., Warmas, K.: Modelling articulated vehicles with a flexible semi-trailer. Arch. Mech. Eng. 80(3), 389–407 (2013)Google Scholar
  21. 21.
    Nordberg, A.: Simulation of a complete truck and trailer assembly: multi body dynamics. Luleå tekniska universitet Institutionen för teknikvetenskap och matematik (2018)Google Scholar
  22. 22.
    Kushairi, S., Schmidt, R., Rahman Omar, A., Azlan Mat Isa, A., Hudha, K.: Tractor-trailer modelling and validation. Int. J. Heavy Veh. Syst. 21(1), 64–82 (2014)Google Scholar
  23. 23.
    Salaani, M.K., Heydinger, G.J., Grygier, P.A.: Heavy tractor-trailer vehicle dynamics modeling for the national advanced driving simulator. SAE Technical Papers (2003)Google Scholar
  24. 24.
    Cheng, C., Evangelou, S.A.: Series active variable geometry suspension robust control based on full-vehicle dynamics. J. Dyn. Syst. Measur. Control Trans. ASME 141(5), 051002 (2019)CrossRefGoogle Scholar
  25. 25.
    Sastry, D.V.A.R., Ramana, K.V., Rao, N.M., Pruthvi, P., Santhosh, D.U.V.: Analysis of MR damper for quarter and half car suspension systems of a roadway vehicle. Int. J. Veh. Struct. Syst. 9(1), 17–22 (2017)Google Scholar
  26. 26.
    Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. Lect. Not. Networks Syst. 76, 59–72 (2020)CrossRefGoogle Scholar
  27. 27.
    Pappalardo, C.M., Guida, D.: Development of a new inertial-based vibration absorber for the active vibration control of flexible structures. Eng. Lett. 26(3), 372–385 (2018)Google Scholar
  28. 28.
    Liu, Q., Zhang, N., Feng, F.: Handling performance of tractor-semitrailers equipped with hydraulically interconnected suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233(12), 3098–3111 (2019)CrossRefGoogle Scholar
  29. 29.
    Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlinear Dyn. 12, 031008 (2017)CrossRefGoogle Scholar
  30. 30.
    Li, H.: Vibration and handling stability analysis of articulated vehicle with hydraulically interconnected suspension. J. Vib. Control 25(13), 1899–1913 (2019)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Guida, R., De Simone, M.C., Dašić, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. In: IOP Conference Series: Materials Science and Engineering, vol. 568, no. 1, p. 012115 (2019)Google Scholar
  32. 32.
    Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91, 2171–2202 (2018)CrossRefGoogle Scholar
  33. 33.
    Shastry, P., El-Gindy, M., Nguyen, N.: Pickup truck and trailer gross vehicle weight study, SAE Technical Papers (2019)Google Scholar
  34. 34.
    de Saxe, C., Cebon, D.: Estimation of trailer off-tracking using visual odometry. Veh. Syst. Dyn. 57(5), 752–776 (2019)CrossRefGoogle Scholar
  35. 35.
    Genta, G.: Meccanica dell’autoveicolo. Levrotto & Bella (2000)Google Scholar
  36. 36.
    Pappalardo, C.M., Guida, D.: A time-domain system identification numerical procedure for obtaining linear dynamical models of multibody mechanical systems. Arch. Appl. Mech. 88(8), 1325–1347 (2018)CrossRefGoogle Scholar
  37. 37.
    Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6, 36 (2018)CrossRefGoogle Scholar
  38. 38.
    Formato, A., Ianniello, D., Romano, R., Pellegrino, A., Villecco, F.: Design and development of a new press for grape marc. Machines 7, 51 (2019)CrossRefGoogle Scholar
  39. 39.
    De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46, 93–100 (2018)CrossRefGoogle Scholar
  40. 40.
    Lucet, E., Micaelli, A.: Stabilization of a road-train of articulated vehicles. Rob. Auton. Syst. 114, 106–123 (2019)CrossRefGoogle Scholar
  41. 41.
    Zhang, Y., Li, Z., Gao, J., Hong, J., Villecco, F., Li, Y.: A method for designing assembly tolerance networks of mechanical assemblies. Math. Probl. Eng. 2012, 513958 (2012)Google Scholar
  42. 42.
    Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19, 475 (2017)CrossRefGoogle Scholar
  43. 43.
    Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45, 565–571 (2017)CrossRefGoogle Scholar
  44. 44.
    Patel, M.D., Pappalardo, C.M., Wang, G., Shabana, A.A.: Integration of geometry and small and large deformation analysis for vehicle modelling: chassis, and airless and pneumatic tyre flexibility. Int. J. Veh. Perform. 5, 90–127 (2019)CrossRefGoogle Scholar
  45. 45.
    Formato, G., Romano, R., Formato, A., Sorvari, J., Koiranen, T., Pellegrino, A., Villecco, F.: Fluid–Structure Interaction Modeling Applied to Peristaltic Pump Flow Simulations. Machines 7(50) (2019)Google Scholar
  46. 46.
    De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(8) (2018)Google Scholar
  47. 47.
    Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139, 011010 (2017)CrossRefGoogle Scholar
  48. 48.
    Sun, Q., Sun, J., Jin, Z., Sun, S.: Mode selection of tractor-and-semitrailer swap transport for ro-ro shipping under land-sea combined transportation. Maritime Policy Manag. 46(8), 995–1010 (2019)CrossRefGoogle Scholar
  49. 49.
    Pappalardo, C.M., Patel, M., Tinsley, B., Shabana, A.A.: Pantograph/catenary contact force control. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, Boston, Massachusetts, USA, 2–5 August 2015, pp. 1–11 (2015)Google Scholar
  50. 50.
    Formato, A., Ianniello, D., Pellegrino, A., Villecco, F.: Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 7(46) (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MEID4 Academic Spin-Off of the University of SalernoFiscianoItaly
  2. 2.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations