Advertisement

Design of Hydraulic Mechatronic Systems with Specified Output Characteristics

  • Anatolii PanchenkoEmail author
  • Angela Voloshina
  • Olena Titova
  • Igor Panchenko
  • Anatoly Caldare
Conference paper
  • 29 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Current trends in expanding the scope of mechatronic systems with a hydraulic drive of active working bodies of self-propelled vehicles require the development of new approaches to solve the problem of improving the output characteristics of hydraulic drives of mechatronic systems with rotary hydraulic machines. It is established that for the drive of active working bodies and running systems of self-propelled equipment, the orbital and planetary hydraulic machines are mostly used. When designing mechatronic systems, much attention is paid to ensuring the specified output characteristics of the actuators of the designed system. A methodology for designing hydraulic mechatronic systems with the elements of multi-criteria optimization has been developed, which allows designing a mechatronic system with specified output characteristics. The optimization parameters of the controls of the mechatronic system with a hydraulic drive of the active working bodies of self-propelled vehicles have been substantiated. This technique involves five stages: the choice of the mechatronic system parameters; substantiation of optimized control parameters; development of a mechatronic system model; optimization of selected parameters of the mechatronic system; analysis of optimization results. The parameters of optimization of controls of a mechatronic system with a hydraulic drive for active working bodies and running systems of self-propelled vehicles have been substantiated. As a result of the studies, the optimal settings of the safety valve of the mechatronic system have been established, providing deviations of the pressure and angular velocity of the actuators from the set ones with an error of 0.17% and 0.67%, respectively.

Keywords

Mechatronic system Planetary hydraulic motor Optimization criterion Integral quadratic estimate 

References

  1. 1.
    Stryczek, J., Bednarczyk, S., Biernack, K.: Strength analysis of the polyoxymethylene cycloidal gears of the gerotor pump. Arch. Civil Mech. Eng. 14(4), 647–660 (2014).  https://doi.org/10.1016/j.acme.2013.12.005CrossRefGoogle Scholar
  2. 2.
    Stryczek, J., Bednarczyk, S., Biernack, K.: Gerotor pump with POM gears: design, production technology, research. Arch. Civil Mech. Eng. 14(3), 391–397 (2014).  https://doi.org/10.1016/j.acme.2013.12.008CrossRefGoogle Scholar
  3. 3.
    Panchenko, A., Voloshina, A., Milaeva, I., Panchenko, I., Titova, O.: The Influence of the form error after rotor manufacturing on the output characteristics of an orbital hydraulic motor. Int. J. Eng. Technol. 7(4.3), 1–5 (2018).  https://doi.org/10.14419/ijet.v7i4.3.19542CrossRefGoogle Scholar
  4. 4.
    Panchenko, A., Voloshina, A., Kiurchev, S., et al.: Development of the universal model of mechatronic system with a hydraulic drive. East.-Euro. J. Enterp. Technol. 4(7(94)), 51–60 (2018).  https://doi.org/10.15587/1729-4061.2018.139577CrossRefGoogle Scholar
  5. 5.
    Panchenko, A.I., Voloshina, A.A.: Planetary Rotary Hydraulic Motors, Calculation and Designing. Publishing and Printing Center “Lux”, Melitopol (2016)Google Scholar
  6. 6.
    Voloshina, A., Panchenko, A., Boltyansky, O., Panchenko, I., Titova, O.: Justification of the kinematic diagrams for the distribution system of a planetary hydraulic motor. Int. J. Eng. Technol. 7(4.3), 6–11 (2018).  https://doi.org/10.14419/ijet.v7i4.3.19544CrossRefGoogle Scholar
  7. 7.
    Panchenko, A., Voloshina, A., Boltyansky, O., et al.: Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors. East.-Eur. J. Enterp. Technol. 3(1(93)), 67–77 (2018).  https://doi.org/10.15587/1729-4061.2018.132504CrossRefGoogle Scholar
  8. 8.
    Voloshina, A., Panchenko, A., Boltyansky, O., Titova, O.: Improvement of manufacture workability for distribution systems of planetary hydraulic machines. In: Ivanov, V. et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. LNME, pp. 732–741. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-22365-6_73
  9. 9.
    Gamez-Montero, P., Codina, E., Castilla, R.: A review of gerotor technology in hydraulic machines. Energies 12, 2423 (2019).  https://doi.org/10.3390/en12122423CrossRefGoogle Scholar
  10. 10.
    Rogovyi, A.: Energy performances of the vortex chamber supercharger. Energy 163, 52–60 (2018).  https://doi.org/10.1088/1757-899x/233/1/012011CrossRefGoogle Scholar
  11. 11.
    Rogovyi, A., Khovanskyy, S.: Application of the similarity theory for vortex chamber superchargers. IOP Conf. Ser.: Mater. Sci. Eng. 233 (2017).  https://doi.org/10.1088/1757-899x/233/1/012011
  12. 12.
    Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Periodica Polytech. Mech. Eng. 63(1), 67–73 (2019).  https://doi.org/10.3311/PPme.13198CrossRefGoogle Scholar
  13. 13.
    Rogovyi, A., Khovanskyy, S., Grechka, I., Pitel, J.: The wall erosion in a vortex chamber supercharger due to pumping abrasive mediums. In: Design, Simulation, Manufacturing: The Innovation Exchange, pp. 682–691 (2019)Google Scholar
  14. 14.
    Pavlenko, I., Simonovskiy, V., Ivanov, V., Zajac, J., Pitel, J.: Application of artificial neural network for identification of bearing stiffness characteristics in rotor dynamics analysis. In: Ivanov, V. et al. (eds.) Advances in Design, Simulation and Manufacturing. DSMIE-2018. LNME, pp. 325–335. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-93587-4_34
  15. 15.
    Pavlenko, I.V., Simonovskiy, V.I., Demianenko, M.M.: Dynamic analysis of centrifugal machine rotors supported on ball bearings by combined using 3D and beam finite element models. IOP Conf. Ser.: Mater. Sci. Eng. 233(1) (2017).  https://doi.org/10.1088/1757-899x/233/1/012053
  16. 16.
    Gaydamaka, A., Kulik, G., Frantsuzov, V., et al.: Devising an engineering procedure for calculating the ductility of a roller bearing under a no-central radial load. East.-Eur. J. Enterp. Technol. 3(7(99)), 6–10 (2019).  https://doi.org/10.15587/1729-4061.2019.168145CrossRefGoogle Scholar
  17. 17.
    Altare, G., Rundo, M.: Computational fluid dynamics analysis of gerotor lubricating pumps at high-speed: geometric features influencing the filling capability. J. Fluids Eng. 38(11) (2016).  https://doi.org/10.1115/1.4033675
  18. 18.
    Chiu-Fan, H.: Flow characteristics of gerotor pumps with novel variable clearance designs. J. Fluids Eng. 137(4) (2015).  https://doi.org/10.1115/1.4029274
  19. 19.
    Van de Ven, J.D.: On fluid compressibility in switch-mode hydraulic circuits. Part I: modeling and analysis. J. Dyn. Syst. Meas. Control 135(2) (2012).  https://doi.org/10.1115/1.4023062. 021013-021013-13
  20. 20.
    Van de Ven, J.D.: On fluid compressibility in switch-mode hydraulic circuits. Part II: experimental results. J. Dyn. Syst. Meas. Control 135(2) (2012).,  https://doi.org/10.1115/1.4023063. 021014-021014-7
  21. 21.
    Karpus, V.E., Ivanov, V.A.: Choice of the optimal configuration of modular reusable fixtures. Russ. Eng. Res. 32(3), 213–219 (2012).  https://doi.org/10.3103/S1068798X12030124CrossRefGoogle Scholar
  22. 22.
    Liaposhchenko, O.O., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., Demianenko, M.M.: Appliance of inertial gas-dynamic separation of gas-dispersion flows in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. IOP Conf. Ser.: Mater. Sci. Eng. 233(1), 012025 (2017).  https://doi.org/10.1088/1757-899X/233/1/012025CrossRefGoogle Scholar
  23. 23.
    Syomin, D., Rogovyi, A.: Features of a working process and characteristics of irrotational centrifugal pumps. Procedia Eng. 39, 231–237 (2012).  https://doi.org/10.1016/j.proeng.2012.07.029CrossRefGoogle Scholar
  24. 24.
    Strutinsky, V.B., Kolot, O.V.: Simulation mathematical modeling of dissipative characteristics of hydromechanical systems. Ind. Hydraul. Pneum. 2, 63–68 (2003)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Tavria State Agrotechnological UniversityMelitopolUkraine
  2. 2.Joint Stock Company “HIDROINPEX”SorocaMoldova

Personalised recommendations