Advertisement

Numerical Simulation of the Mass-Transfer Process Between Ammonia and Water in the Absorption Chiller

  • Michal Volf
  • Maryna DemianenkoEmail author
  • Oleksandr Starynskyi
  • Oleksandr Liaposhchenko
  • Alireza Mahdavi Nejad
Conference paper
  • 41 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper describes the absorption process of gaseous ammonia into liquid water in the plate heat exchanger, which is considered to be the crucial part of an absorption cooling system. Two approaches are utilized to numerically simulate this absorption process. In the first approach, the dissolution of gaseous ammonia into liquid water, as well as the following chemical reaction between the dissolved liquid ammonia and liquid water, are modeled. In the second approach, only the dissolution of ammonia into water is considered. The Henry’s Law with Van’t Hoff correlation is used for the simulation of the ammonia absorption process, namely the calculation of the concentration of ammonia in gas and in liquid. The Henry’s law is utilized since its line has the best correlation with the ammonia-water equilibrium line for the concentrations, which is taken into account in the numerical simulations. The ammonia mass flux from gas to liquid phase and its concentration at the outlet of the computational domain is determined as a result of the simulations.

Keywords

Refrigerators machines Chillers Ammonia absorption CFD Eulerian model Henry’s law Van’t Hoff correlation 

Notes

Acknowledgments

The Ministry of Education, Youth and Sport of Czech Republic financially supported the presented work within the project LQ1603 Research for SUSEN. This work has been realized within the SUSEN Project established in the framework of the European Regional Development Fund (ERDF) in project CZ.1.05/2.1.00/03.0108 and of the European Strategy Forum on Research Infrastructures (ESFRI) in the project CZ.02.1.01/0.0/0.0/15_008/0000293 and collaboration with the research project No. 0117U003931 “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” at Sumy State University (Sumy, Ukraine). The work has been supported by the grant project Ziel – ETZ INTERREG V Project 53 Grenzüberschreitendes F&I Netzwerk für Energieeffizienz und Kraft-Wärme- (Kälte)-Kopplung/Přeshraniční síť pro výzkum a inovace v oblasti energetické účinnosti a kombinované výroby tepla a elektřiny (2016–2020).

References

  1. 1.
    Srikhirin, P., Aphornratana, S., Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5, 343–372 (2000).  https://doi.org/10.1016/S1364-0321(01)00003-XCrossRefGoogle Scholar
  2. 2.
    Ibarra-Bahena, J., Romero, R.J.: Performance of different experimental absorber designs in absorption heat pump cycle technologies: a review. Energies 7, 751–766 (2014).  https://doi.org/10.3390/en7020751CrossRefGoogle Scholar
  3. 3.
    Crepinsek, Z., Goricanec, D., Krope, J.: Comparison of the performances of absorption refrigeration cycles. WSEAS Trans. Heat Mass Transf. 4, 65–76 (2009)Google Scholar
  4. 4.
    Goel, N., Goswami, D.Y.: Analysis of a counter-current vapor flow absorber. Int. J. Heat Mass Transf. 48, 1283–1292 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.009CrossRefzbMATHGoogle Scholar
  5. 5.
    Jiang, M., Xu, S., Wu, X.: Numerical simulation and experiment for R124-DMAC bubble absorption process in a vertical tubular absorber. Int. J. Therm. Sci. 138, 124–133 (2019).  https://doi.org/10.1016/j.ijthermalsci.2018.12.051CrossRefGoogle Scholar
  6. 6.
    Boudehenn, F., Bonnot, S., Demasles, H., et al.: Development and performances overview of ammonia-water absorption chillers with cooling capacities from 5 to 100 kW. Energy Procedia 91, 707–716 (2016).  https://doi.org/10.1016/j.egypro.2016.06.234CrossRefGoogle Scholar
  7. 7.
    Triche, D., Bonnot, S., Perier-Muzet, M., et al.: Modeling and experimental study of an ammonia-water falling film absorber. Energy Procedia 91, 857–867 (2016).  https://doi.org/10.1016/j.egypro.2016.06.252CrossRefGoogle Scholar
  8. 8.
    Triche, D., Bonnot, S., Perier-Muzet, M., Boudehenn, F.: Experimental and numerical study of a falling film absorber in an ammonia-water absorption chiller. Int. J. Heat Mass Trans. 111, 374–385 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008CrossRefGoogle Scholar
  9. 9.
    Taboas, F., Valles, M., Bourouis, M., Coronas, A.: Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger. Int. J. Refrig 33, 695–705 (2010).  https://doi.org/10.1016/j.ijrefrig.2009.12.005CrossRefGoogle Scholar
  10. 10.
    Cerezo, J., Bourouis, M., Valles, M., et al.: Experimental study of an ammonia-water bubble absorber using a plate heat exchanger for absorption refrigeration machines. Appl. Therm. Eng. 29, 1005–1011 (2009).  https://doi.org/10.1016/j.applthermaleng.2008.05.012CrossRefGoogle Scholar
  11. 11.
    Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J., Pavlenko, I. (eds.) Advances in Manufacturing II. MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-18715-6_14
  12. 12.
    Liaposhchenko, O., Pavlenko, I., Demianenko, M., Starynskyi, O., Pitel, J.: The methodology of numerical simulations of separation process in SPR-separator. In: 2nd International Workshop on Computer Modeling and Intelligent Systems. CMIS 2019. CEUR Workshop Proceedings, vol. 2353, pp. 822–832 (2019)Google Scholar
  13. 13.
    Lima, A.A.S., Ochoa, A.A.V., Da Costa, J.A.P., Henriquez, J.R.: CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig 98, 514–525 (2018)CrossRefGoogle Scholar
  14. 14.
    Ryan, E.M., Xu, W., De Croix, D., et al.: Multi-phase CFD modeling of a solid sorbent carbon capture system. Am. Soc. Mech. Eng. Fluids Eng. Div. FEDSM 1, 653–661 (2012).  https://doi.org/10.1115/FEDSM2012-72298CrossRefGoogle Scholar
  15. 15.
    Chalermsinsuwan, B., Piumsomboon, P., Gidaspow, D.: A computational fluid dynamics design of a carbon dioxide sorption circulating fluidized bed. Part. Technol. Fluid. AlChE 56(11), 2805–2824 (2010)Google Scholar
  16. 16.
    Asendrych, D., Niegodajew, P., Drobniak, S.: CFD modelling of CO2 capture in a packed bed. Chem. Process Eng. 34(2), 269–282 (2013).  https://doi.org/10.2478/cpe-2013-0022CrossRefGoogle Scholar
  17. 17.
    Niegodajew, P., Asendrych, D.: Amine based CO2 capture – CFD simulation of absorber performance. Appl. Math. Model. 40(23–24), 10222–10237 (2016).  https://doi.org/10.1016/j.apm.2016.07.003CrossRefzbMATHGoogle Scholar
  18. 18.
    Plyatsuk, L.D., Ablieieva, I.Yu., Vaskin, R.A., Yeskendirov, M., Hurets, L.L.: Mathematical modeling of gas-cleaning equipment with a highly developed phase contact surface. J. Eng. Sci. 5(2), F19–F24 (2018).  https://doi.org/10.21272/jes.2018.5(2).f4CrossRefGoogle Scholar
  19. 19.
    Lu, X., Xie, P., Ingham, D.B., et al.: Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem. Eng. Sci. 199, 302–318 (2019).  https://doi.org/10.1016/j.ces.2019.01.029CrossRefGoogle Scholar
  20. 20.
    Qin, M., Dong, Y., Cui, L., et al.: Chemical engineering research and design pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers. Chem. Eng. Res. Des. 148, 280–290 (2019).  https://doi.org/10.1016/j.cherd.2019.06.011CrossRefGoogle Scholar
  21. 21.
    Asfand, F., Stiriba, Y., Bourouis, M.: CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems. Energy 91, 517–530 (2015).  https://doi.org/10.1016/j.energy.2015.08.018CrossRefGoogle Scholar
  22. 22.
    Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, M., Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_76
  23. 23.
    Liaposhchenko, O., Pavlenko, I., Ivanov, V., Demianenko, M., Starynskyi, O., Kuric, I., Khukhryanskiy, O.: Improvement of parameters for the multi-functional oil-gas separator of “Heater-Treater” type. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, pp. 66–71 (2019).  https://doi.org/10.1109/iea.2019.8715203
  24. 24.
    Lukashov, V.K., Kostiuchenko, Y.V., Timofeev, S.V.: Hydrodynamics of a liquid film downflow on a flat surface in evaporation conditions into a flow of neutral gas. J. Eng. Sci. 6(1), F19–F24 (2019).  https://doi.org/10.21272/jes.2019.6(1).f4CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of West BohemiaPilsenCzech Republic
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.Wentworth Institute of TechnologyBostonUSA

Personalised recommendations