Advertisement

Parameter Identification of the Capillary Rising Process in Nanomaterials for Evaporative Cooling Applications

  • Dmytro Levchenko
  • Ivan PavlenkoEmail author
  • Anton Shulumei
  • Marek Ochowiak
  • Andrii Manzharov
Conference paper
  • 31 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article is devoted to the study of fluid lift dynamics due to the capillary effect, as well as the development of the reliable mathematical model of capillary rising process based on parameter identification considering the experimental results data. The results of the research are applicable in evaporative cooling technologies, inertial-filtering separation, and filtration processes. Additionally, they can be applied in the fields of air conditioning, heat recovery, and electricity generation cycles. The practical significance of the obtained data is in relatively high performance (absorbency, thermal resistance, and liquid transportation capacity) of studied material samples for use in heat and mass transfer equipment. The experimental research consists of four stages for five samples of paper-like porous nanomaterial. The achieved results are used to evaluate the height of the liquid rising along capillary-porous material in time of the process. According to the results of analytical and experimental studies, the mathematical model was developed for the aim of estimating the parameters of the liquid’s movement. Particularly, the proposed approaches based on both quasi- and nonlinear, single- and multiparameter regression analyses, the rising-rate parameter and the maximum height of the liquid’s rise along the capillary plate were identified. Carrying out the validation of the proposed mathematical models with experimental results allows concluding that the two-parameter estimation of the operating parameters with the relatively high value of the r-Pearson correlation coefficient allows clarifying the proposed reliable mathematical model of liquid’s lifting process in capillary-porous media with enough accuracy.

Keywords

Evaporative cooling Maisotsenko cycle Porous materials Capillary effect Regression approach 

Notes

Acknowledgments

The authors acknowledge the support by the Innovative Ideas LLC and Ministry of Education and Science of Ukraine funded project No. 0117U003931 “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” at Sumy State University, Ukraine.

References

  1. 1.
    Mahmood, M.H., Sultan, M., Miyazaki, T., Koyama, S., Maisotsenko, V.S.: Overview of the Maisotsenko cycle – a way towards dew point evaporative cooling. Renew. Sustain. Energy Rev. 66, 537–555 (2016).  https://doi.org/10.1016/j.rser.2016.08.022CrossRefGoogle Scholar
  2. 2.
    Pandelidis, D., Anisimov, S.: Numerical analysis of the heat and mass transfer processes in selected M-cycle heat exchangers for the dew point evaporative cooling. Energy Convers. Manag. 90, 62–83 (2015)CrossRefGoogle Scholar
  3. 3.
    Duan, Z., Zhao, X., Zhan, C., Dong, X., Chen, H.: Energy saving potential of a counter-flow regenerative evaporative cooler for various climates of China: experiment-based evaluation. Energy Build. 148, 199–210 (2017)CrossRefGoogle Scholar
  4. 4.
    Xu, P., Ma, X., Zhao, X., Fancey, K.S.: Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Build. Environ. 110, 104–114 (2016).  https://doi.org/10.1016/j.buildenv.2016.10.003CrossRefGoogle Scholar
  5. 5.
    Elbakian, A., Sentyakov, B., Bozek, P., Kuric, I., Sentyakov, K.: Automated separation of basalt fiber and other earth resources by the means of acoustic vibrations. Acta Montan. Slovaca 23(3), 271–281 (2018)Google Scholar
  6. 6.
    Hammes, M.V., Heberle, E.S., da Silva, P.R., Norena, C.P.Z., Englert, A.H., Cardozo, N.S.M.: Mathematical modeling of the capillary rise of liquids in partially soluble particle beds. Powder Technol. 325, 21–30 (2018)CrossRefGoogle Scholar
  7. 7.
    Monteiro, P.J.M., Rycroft, C.H., Barenblatt, G.I.: A mathematical model of fluid and gas flow in nanoporous media. Proc. Natl. Acad. Sci. U. S. Am. 109(50), 20309–20313 (2012)CrossRefGoogle Scholar
  8. 8.
    Choi, C.-H., Krishnan, S., TeGrotenhuis, W., Chang, C.-H.: Capillary rise of nanostructured microwicks. Micromachines 9(4), 153 (2018)CrossRefGoogle Scholar
  9. 9.
    Sokolov, V., Krol, O., Stepanova, O.: Choice of correcting link for electrohydraulic servo drive of technological equipment. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 702–710. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_70
  10. 10.
    Krol, O., Sokolov, V.: Modelling of spindle nodes for machining centers. J. Phys: Conf. Ser. 1084, 012007 (2018).  https://doi.org/10.1088/1742-6596/1084/1/012007CrossRefGoogle Scholar
  11. 11.
    Antoszewski, B., Tarelnik, V.: Laser texturing of sliding surfaces of bearings and pump seals. Appl. Mech. Mater. 630, 301–307 (2014).  https://doi.org/10.4028/www.scientific.net/AMM.630.301CrossRefGoogle Scholar
  12. 12.
    Dynnyk, O., Denysenko, Y., Zaloga, V., Ivchenko, O., Yashyna, T.: Information support for the quality management system assessment of engineering enterprises. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 65–74. Springer, Cham (2020)  https://doi.org/10.1007/978-3-030-22365-6_7
  13. 13.
    Fusko, M., Rakyta, M., Dulina, L., Sulirova, I., Edl, M.: Digitization in the technical service management system. MM Sci. J. 2018(March), 2260–2266 (2018).  https://doi.org/10.17973/mmsj.2018_03_2017105
  14. 14.
    Saniuk, A., Saniuk, S., Caganova, D., Kuzdowicz, P.: Key performance indicators in assessment of enterprises of metallurgical sector. In: 24th International Conference on Metallurgy and Materials, pp. 2070–2075 (2015)Google Scholar
  15. 15.
    Hoseinzadeh, S., Heyns, P.S., Chamkha, A.J., Shirkhani, A.: Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 138, 1–9 (2019)CrossRefGoogle Scholar
  16. 16.
    Petinrin, M.O., Dare, A.A.: Numerical investigation of the concave-cut baffles effect in shell-and-tube heat exchanger. J. Eng. Sci. 6(1), E1–E9 (2019).  https://doi.org/10.21272/jes.2019.6(1).e1CrossRefGoogle Scholar
  17. 17.
    Petinrin, M.O., Towoju, O.A., Ajiboye, S.A., Zebulun, O.E.: Numerical study of the effect of changing tube pitches on heat and flow characteristics from tube bundles in cross flow. J. Eng. Sci. 6(2), E1–E10 (2019).  https://doi.org/10.21272/jes.2019.6(2).e1CrossRefGoogle Scholar
  18. 18.
    Liaposhchenko, O., Pavlenko, I., Demianenko, M., Starynskyi, O., Pitel, J.: The methodology of numerical simulations of separation process in SPR-separator. In: 2nd International Workshop on Computer Modeling and Intelligent Systems, CMIS 2019. CEUR Workshop Proceedings, vol. 2353, pp. 822–832 (2019)Google Scholar
  19. 19.
    Liaposhchenko, O., Pavlenko, I., Ivanov, V., Demianenko, M., Starynskyi, O., Kuric, I., Khukhryanskiy, O.: Improvement of parameters for the multi-functional oil-gas separator of “Heater-Treater” type. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, pp. 66–71 (2019).  https://doi.org/10.1109/iea.2019.8715203
  20. 20.
    Fesenko, A., Yevsiukova, F., Basova, Y., Ivanova, M., Ivanov, V.: Prospects of using hydrodynamic cavitation for enhancement of efficiency of fluid working medium preparation technologies. Period. Polytech. Mech. Eng. 62(4), 269–276 (2018).  https://doi.org/10.3311/PPme.11877CrossRefGoogle Scholar
  21. 21.
    Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Period. Polytech. Mech. Eng. 63(1), 67–73 (2019)CrossRefGoogle Scholar
  22. 22.
    Dobrotvorskiy, S., Dobrovolska, L., Aleksenko, B., Basova, Y.: The use of waveguides with internal dissectors in the process of regeneration of industrial adsorbents by means of the energy of ultrahigh-frequency radiation. In: Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 433–442. Springer, Cham (2019)Google Scholar
  23. 23.
    Sklabinskyi, V., Liaposhchenko, O., Pavlenko, I., Lytvynenko, O., Demianenko, M.: Modelling of liquid’s distribution and migration in the fibrous filter layer in the process of inertial-filtering separation. In: Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 489–497. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-93587-4_51
  24. 24.
    Liaposchenko, O., Pavlenko, I., Nastenko, O.: The model of crossed movement and gas-liquid flow interaction with captured liquid film in the inertial-filtering separation. Sep. Purif. Technol. 173, 240–243 (2017).  https://doi.org/10.1016/j.seppur.2016.08.042CrossRefGoogle Scholar
  25. 25.
    Ghasemiasl, R., Hoseinzadeh, S., Javadi, M.A.: Numerical analysis of energy storage systems using two phase-change materials with nanoparticles. J. Thermophys. Heat Transf. 32(2), 440–448 (2018)CrossRefGoogle Scholar
  26. 26.
    Povstyanoy, O., Zabolotnyi, O., Rud, V., Kuzmov, A., Herasymchuk, H.: Modeling of processes for creation new porous permeable materials with adjustable properties. In: Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 456–465. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_46
  27. 27.
    Panchenko, A., Voloshina, A., Panchenko, I., Titova, O., Pastushenko, A.: Reliability design of rotors for orbital hydraulic motors. IOP Conf. Ser.: Mater. Sci. Eng. 708(1), 012017 (2019).  https://doi.org/10.1088/1757-899X/708/1/012017CrossRefGoogle Scholar
  28. 28.
    Voloshina, A., Panchenko, A., Panchenko, I., Titova, O., Zasiadko, A.: Improving the output characteristics of planetary hydraulic machines. IOP Conf. Ser.: Mater. Sci. Eng. 708(1), 012038 (2019).  https://doi.org/10.1088/1757-899X/708/1/012038CrossRefGoogle Scholar
  29. 29.
    Bulgakov, V., Pilipaka, S., Adamchuk, V., Olt, J.: Theory of motion of a material point along a plane curve with a constant pressure and velocity. Agron. Res. 12(3), 937–948 (2014)Google Scholar
  30. 30.
    Pylypaka, S., Nesvidomin, V., Zaharova, T., Pavlenko, O., Klendiy, M.: The investigation of particle movement on a helical surface. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 671–681. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-22365-6_67
  31. 31.
    Lukashov, V.K., Kostiuchenko, Y.V., Timofeev, S.V.: Hydrodynamics of a liquid film downflow on a flat surface in evaporation conditions into a flow of neutral gas. J. Eng. Sci. 6(1), F19–F24 (2019).  https://doi.org/10.21272/jes.2019.6(1).f4CrossRefGoogle Scholar
  32. 32.
    Boyev, Y., Safyants, S., Kachkovsky, A.: Numerical study of the dynamics of the capillary rising of liquid. Metall. Energy 2011, 1–13 (2011)Google Scholar
  33. 33.
    Kalinichenko, P., Gusak, O., Khovanskyy, S., Krutas, Y.: Substantiation and development of the procedure for calculating a hydraulic balancing device under condition of minimal energy losses. East.-Eur. J. Enterp. Technol. 2(7–86), 36–41 (2017)Google Scholar
  34. 34.
    Liu, S., Li, S., Liu, J.: Jurin’s law revisited: exact meniscus shape and column height. Eur. Phys. J. E 41(3), 46 (2018)CrossRefGoogle Scholar
  35. 35.
    Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibr. Phys. Syst. 29, 2018026 (2018)Google Scholar
  36. 36.
    Ostroha, R., Yukhymenko, M., Lytvynenko, A., Bocko, J., Pavlenko, I.: Granulation process of the organic suspension: fluidized bed temperature influence on the kinetics of the granule formation. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 463–471. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-93587-4_48
  37. 37.
    Egger, H., Pietschmann, J., Schlottbom, M.: Identification of nonlinear heat conduction laws. J. Inverse Ill-Posed Probl. 23(5), 429–437 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Kaplan, M., Nicholls, D.P.: A nonlinear least squares framework for periodic grating identification with a high–order perturbation of surfaces implementation. Appl. Numer. Math. 143, 20–34 (2019)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jukic, D.: A simple proof of the existence of the best estimator in a quasilinear regression model. J. Optim. Theory Appl. 162(1), 293–302 (2014).  https://doi.org/10.1007/s10957-013-0434-1MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Song, X., Zheng, G.-H., Jiang, L.: Identification of the reaction coefficient in time fractional diffusion equations. J. Comput. Appl. Math. 345, 295–309 (2019).  https://doi.org/10.1016/j.cam.2018.06.047MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Innovative Ideas LLCSumyUkraine
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.Poznan University of TechnologyPoznanPoland

Personalised recommendations