Advertisement

Introduction

  • João P. BelfoEmail author
  • João M. Lemos
Chapter
  • 4 Downloads
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter motivates the study of Optimal Impulsive Control (OIC) applied to cancer therapy. The OIC problem is formulated and divided in three control sub-problems that are treated in detail in Chap.  5. The model structure used, that comprises pharmacokinetics, pharmacodynamics, and tumor dynamics, is described. Relevant background literature is described.

References

  1. Araujo RP, Mcelwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modeling. Bull Math Biol 66(5):1039-1091Google Scholar
  2. Arutyunov A, Karamzin D, Pereira FL (2019) Optimal impulsive control. Springer, BerlinGoogle Scholar
  3. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, Hahnfeldt P (2014) Classical mathematica models for description and prediction of experimental tumor growth. PLOS Comput Biol 10(8):e1003800CrossRefGoogle Scholar
  4. Bermudez A (2001) Some applications of optimal control theory of distributed systems. ESAIM 8:195–218Google Scholar
  5. Bressan A, Piccoli B (2007) Introduction to the mathematical theory of control. Am Inst Math SciGoogle Scholar
  6. Buchanan LF, Norton FE (1971) Optimal control applications in economic systems. Elsevier, Adv Control Syst 8:41–187Google Scholar
  7. Cacace F, Cusimano V, Germani A, Palumbo P, Papa P (2018) Closed-loop control of tumor growth by means of anti-angiogenic administration. Math Biosci Eng 15(4):827–839Google Scholar
  8. Cacace F, Cusimano V, Palumbo P (2020) Optimal impulsive control with application to antiangiogenic tumor therapy. IEEE Trans Control Syst Technol 28(1):106–117Google Scholar
  9. Campbell JL, Jr, Clewell RA, Gentry PR, Andersen ME Clewell HJ, III (2012) Physiological based pharmacokinetic/toxicokinetic modelling. Meth Mol Biol 929:439–99Google Scholar
  10. d’Onofrio A, Ledzewicz U, Maurer H, Schättler H (2009) On optimal delivery of combination therapy for tumors. Math Biosci 222(1):13–26Google Scholar
  11. Drexler DA, Sápi J, Kovács L (2017) Optimal discrete time control of antiangiogenic tumor therapy. In: Proceedings of the 20th IFAC World Congress, pp 14046–14051Google Scholar
  12. Ducher M, Maire P, Goutellu S, Maurin M (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fund Clin Pharmacol 22(6):633–648Google Scholar
  13. Eladdadi A, Kim P, Mallet D (eds) (2014) Matematical models of tumor—immune system dynamics. Springer, BerlinGoogle Scholar
  14. Ergun A, Camphausen K, Wein LW (2003) Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull Math Biol 65(3):407–424Google Scholar
  15. Kumar V, Abbas AK, Aster, JC (2012) Robbins basic pathology, 9th edn. Elsevier Saunders, PhiladelphiaGoogle Scholar
  16. Luca F, Salvatore S, Massimo L (2018) Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, vol 9. ISSN: 1663-9812Google Scholar
  17. Martin R, Teo KL (1994) Optimal control of drug administration in cancer chemotherapy. World Scientific, SingaporeGoogle Scholar
  18. Meibohm B, Derendorf H (1997) Basic Concepts of pharmacokinetic/pharmacodynamic modelling. Int J Clin Pharmacol Ther 35(40):401–13Google Scholar
  19. Meija GH, Alanis AY, Gonzalez MH, Findeisen R, Vargas EAH (2020) Passivity-based inverse optimal impulsive control for influenza treatment in the host. IEEE Trans Control Syst Technol 28(1):94–105Google Scholar
  20. Miller BM, Rubinovich EYa (2003) Impulsive control in continuous systems. Springer Science+Business Media, LLC, BerlinGoogle Scholar
  21. Nathan DG (2007) The cancer treatment revolution. Trans Am Clin Climatol Assoc 118:317–323Google Scholar
  22. Paalzow LK (1995) Torsten Teorell, the father of pharmacokinetics. Upsala J Med Sci 100:41–46Google Scholar
  23. Pierce JG, Schumitzky A (1976) Optimal impulsive control of compartment models, I: Qualitative aspects. J Optim Theory Appl Springer 18:537–554Google Scholar
  24. Pierce JG, Schumitzky A (1978) Optimal impulsive control of compartment models, II: algorithm. J Optim Theory Appl Springer 26:581–599Google Scholar
  25. Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicines 5(2):34CrossRefGoogle Scholar
  26. Sbeity H, Younes R (2015) Review of optimization methods for cancer chemotherapy treatment planning. Comput Sci Syst Biol 8:2Google Scholar
  27. Schättler H, Ledzewicz U (2010) Optimal control for mathematical models of cancer therapies. Springer, BerlinGoogle Scholar
  28. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol 54:407–419Google Scholar
  29. Sethi SP, Thompson GL (2006) Optimal control theory—applications to management science and economics, 2nd edn. Springer, BerlinGoogle Scholar
  30. Stamova I, Stamov GT (2016) Applied impulsive mathematical models. Springer, Cham, SwitzerlandCrossRefGoogle Scholar
  31. Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 4:69CrossRefGoogle Scholar
  32. Sussmann HJ, Willems JC (1997) 300 Years of optimal control: from the brachistochrone to the maximum principle. IEEE Control Syst. 17(3):32–44Google Scholar
  33. Swan GW (1975) Some strategies for harvesting a single species. Bull Math Biol 37:659–673Google Scholar
  34. Swan GW (1984) Applications of optimal control theory in biomedicine, vol 60. Dekker, New York, p 1Google Scholar
  35. Swan GW (1990) Role of optimal control theory in cancer chemotherapy applications of optimal control theory in biomedicine. Math Biosci 101:237–284Google Scholar
  36. Teles FF, Lemos JM (2019) Cancer therapy optimization based on multiple model adaptive control. Biomed Signal Process Control 48:255–264Google Scholar
  37. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10Google Scholar
  38. Welling PG (1997) Pharmacokinetics: processes, mathematics, and applications, 2nd edn. American Chemical Society, Washington DCGoogle Scholar
  39. Yoo SY, Kwon SM (2013) Angiogenesis and Its therapeutic opportunities. Hindawi Publishing Corporation 3013:127170Google Scholar
  40. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Control of Dynamical SystemsINESC-IDLisboaPortugal

Personalised recommendations