Advertisement

Electricity Theft Detection Using Machine Learning Techniques to Secure Smart Grid

  • Muhammad Adil
  • Nadeem JavaidEmail author
  • Zia Ullah
  • Mahad Maqsood
  • Salman Ali
  • Muhammad Awais Daud
Conference paper
  • 137 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1194)

Abstract

Non Technical Losses (NTL) is major problem in power system and cause big revenue losses to the electric utility. The Electricity Theft Detection (ETD) is important topic of research over the years and achieves great success in efficiently detecting the electricity thieves. Further research is needed to improve the existing work and to overcome the problems of data imbalance and detection accuracy of electricity theft. In this paper, we propose a solution to address the above two challenges. The propose solution is consists of Long Short Term Memory (LSTM) and Random Under Sampling Boosting (RUSBoost) technique. Firstly, the data is pre-processed using data normalization and data interpolation. The pre-processed data is further given to LSTM module for feature extraction. Finally, refined features are passed to RUSBoost module for classification. This technique is efficient in solving the data imbalance problem without causing the loss of information and overfitting problems. For evaluation, the proposed model is compared with the state-of-the-art techniques. The experimental results show that our proposed model has achieved high performance in terms of F1-score, precision, recall and Recieving Operating Characteristics curve. The proposed technique is efficient and performs better for recovery of revenue losses in electric utilities.

References

  1. 1.
    Glauner, P., Meira, J.A., Valtchev, P., State, R., Bettinger, F.: The challenge of non-technical loss detection using artificial intelligence: a survey (2016). arXiv preprint arXiv:1606.00626
  2. 2.
    Northeast Group LLC: Electricity theft and non-technical losses: global markets, solutions, and vendors (2017). http://www.northeast-group.com
  3. 3.
    Maamar, A., Benahmed, K.: A hybrid model for anomalies detection in AMI system combining K-means clustering and deep neural network (2019)Google Scholar
  4. 4.
    Figueroa, G., Chen, Y. S., Avila, N., Chu, C.C.: Improved practices in machine learning algorithms for NTL detection with imbalanced data. In: 2017 IEEE Power Energy Society General Meeting, pp. 1–5. IEEE, July 2017Google Scholar
  5. 5.
    Glauner, P., Boechat, A., Dolberg, L., State, R., Bettinger, F., Rangoni, Y., Duarte, D.: Large-scale detection of non-technical losses in imbalanced data sets. In: 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5. IEEE, September 2016Google Scholar
  6. 6.
    Fan, C., Xiao, F., Zhao, Y., Wang, J.: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Appl. Energy 211, 1123–1135 (2018)CrossRefGoogle Scholar
  7. 7.
    Viegas, J.L., Esteves, P.R., Vieira, S.M.: Clustering-based novelty detection for identification of non-technical losses. Int. J. Electr. Power Energy Syst. 101, 301–310 (2018)CrossRefGoogle Scholar
  8. 8.
    Saeed, M.S., Mustafa, M.W., Sheikh, U.U., Jumani, T.A., Mirjat, N.H.: Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 8(8), 860 (2019)CrossRefGoogle Scholar
  9. 9.
    Guerrero, J.I., Monedero, I., Biscarri, F., Biscarri, J., Millan, R., Leon, C.: Non-technical losses reduction by improving the inspections accuracy in a power utility. IEEE Trans. Power Syst. 33(2), 1209–1218 (2017)CrossRefGoogle Scholar
  10. 10.
    Ding, N., Ma, H., Gao, H., Ma, Y., Tan, G.: Real-time anomaly detection based on long short-Term memory and Gaussian Mixture Model. Comput. Electr. Eng. 79, 106458 (2019)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Yang, I., Ahn, S.H.: Sample efficient home power anomaly detection in real time using semi-supervised learning. IEEE Access 7, 139712–139725 (2019)CrossRefGoogle Scholar
  12. 12.
    Spirić, J.V., Stanković, S.S., Dočić, M.B.: Identification of suspicious electricity customers. Int. J. Electr. Power Energy Syst. 95, 635–643 (2018)CrossRefGoogle Scholar
  13. 13.
    Zheng, K., Chen, Q., Wang, Y., Kang, C., Xia, Q.: A novel combined data-driven approach for electricity theft detection. IEEE Trans. Industr. Inf. 15(3), 1809–1819 (2018)CrossRefGoogle Scholar
  14. 14.
    Buzau, M.M., Tejedor-Aguilera, J., Cruz-Romero, P., Gomez-Exposito, A.: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. (2019)Google Scholar
  15. 15.
    Zheng, Z., Yang, Y., Niu, X., Dai, H.N., Zhou, Y.: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Industr. Inf. 14(4), 1606–1615 (2017)CrossRefGoogle Scholar
  16. 16.
    Hasan, M., Toma, R.N., Nahid, A.A., Islam, M.M., Kim, J.M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)CrossRefGoogle Scholar
  17. 17.
    Lu, X., Zhou, Y., Wang, Z., Yi, Y., Feng, L., Wang, F.: Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18), 3452 (2019) CrossRefGoogle Scholar
  18. 18.
    Singh, S.K., Bose, R., Joshi, A.: Entropy-based electricity theft detection in AMI network. IET Cyber Phys. Syst. Theor. Appl. 3(2), 99–105 (2018)Google Scholar
  19. 19.
    Singh, S.K., Bose, R., Joshi, A.: Energy theft detection for AMI using principal component analysis based reconstructed data. IET Cyber Phys. Syst. Theor. Appl. 4(2), 179–185 (2019)Google Scholar
  20. 20.
    Ramos, C.C., Rodrigues, D., de Souza, A.N., Papa, J.P.: On the study of commercial losses in Brazil: a binary black hole algorithm for theft characterization. IEEE Trans. Smart Grid 9(2), 676–683 (2016)CrossRefGoogle Scholar
  21. 21.
    Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional GAN. In: Advances in Neural Information Processing Systems, pp. 7333–7343 (2019)Google Scholar
  22. 22.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Ghemawat, S.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv preprint arXiv:1603.04467
  23. 23.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2009)CrossRefGoogle Scholar
  24. 24.
    Sofaer, H.R., Hoeting, J.A., Jarnevich, C.S.: The area under the precision-recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10(4), 565–577 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Muhammad Adil
    • 1
  • Nadeem Javaid
    • 2
    Email author
  • Zia Ullah
    • 2
  • Mahad Maqsood
    • 2
  • Salman Ali
    • 1
  • Muhammad Awais Daud
    • 1
  1. 1.Department of Electrical and Computer EngineeringCOMSATS University IslamabadIslamabadPakistan
  2. 2.Department of Computer ScienceCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations