Fuzzy Image Processing and Deep Learning for Microaneurysms Detection

  • Sarni Suhaila RahimEmail author
  • Vasile Palade
  • Ibrahim Almakky
  • Andreas Holzinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12090)


Diabetic retinopathy is an eye disease generated by long-standing diabetes, and it is one of the main causes of vision loss if not diagnosed and treated properly. Diabetic retinopathy consists of several types of lesions found in the retina of diabetic individuals. One of the important lesions of diabetic retinopathy is microaneurysms, which are small red dots that appear due to the local weakness of the capillary walls. This paper presents a novel automatic microaneurysms detection method, in retinal images by employing fuzzy image processing and deep learning. Firstly, the paper explores the existing systems of diabetic retinopathy screening, with a focus on the microaneurysms detection methods and deep learning classification. The proposed system consists of two parts, namely: image preprocessing with a combination of fuzzy image processing techniques, and also the microaneurysms classification using deep neural networks. This paper investigates the capability of a combination of different fuzzy image preprocessing techniques for the detection of microaneurysms in eye fundus images. In addition to the proposed microaneurysms detection system, the paper also highlights a novel dataset for the microaneurysms detection that includes the ground truth data. The purpose of the proposed automated microaneurysm detection with digital analysis of eye fundus images is to substitute current practice that is based on manual diagnosis and visual inspection, and eventually to contribute to producing a more reliable diabetic retinopathy screening system.


Diabetic Retinopathy Microaneurysms Fuzzy image processing Deep learning Colour fundus images Eye screening 



This project is part of a postdoctoral research currently being carried out at the Faculty of Engineering, Environment and Computing, Coventry University, United Kingdom. The deepest gratitude and thanks go to the Universiti Teknikal Malaysia Melaka (UTeM) for sponsoring this postdoctoral research. The authors are thankful to the Ministry of Health Malaysia and the Melaka Hospital, Malaysia, for providing the database of retinal images and also for the manual grading done by the experts.


  1. 1.
    Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11), e442 (2006)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Cunha-vaz, J.: Diabetic Retinopathy. World Scientific Publishing Co Pte Ltd, Singapore (2010)CrossRefGoogle Scholar
  4. 4.
    Taylor, R., Batey, D.: Handbook of Retinal Screening in Diabetes: Diagnosis and Management. Wiley, Chichester (2012)CrossRefGoogle Scholar
  5. 5.
    Ministry of Health Malaysia Diabetic Retinopathy Screening Team: Handbook guide to diabetic retinopathy screening-Module 5-2012. Ministry of Health Malaysia, Putrajaya (2012)Google Scholar
  6. 6.
    Adal, K.M., Ali, S., Sidibe, D., Karnowski, T., Chaum, E., Meriaudeau, F.: Automated detection of microaneurysms using robust blob descriptors. SPIE Medical Imaging-Computer Aided Diagnosis, 8670-22 (2013)Google Scholar
  7. 7.
    Adal, K.M., Sidibe, D., Ali, S., Chaum, E., Karnowski, T.P., Meriaudeau, F.: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput. Methods Programs Biomed. 114, 1–10 (2014)CrossRefGoogle Scholar
  8. 8.
    Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)CrossRefGoogle Scholar
  9. 9.
    Akram, M.U., Khalid, S., Khan, S.A.: Identification and classification of microaneurysms for aerly detection of diabetic retinopathy. Pattern Recogn. 46, 107–116 (2012)CrossRefGoogle Scholar
  10. 10.
    Alipour, S.H., Rabbani, H., Akhlaghi, M.R.: Diabetic retinopathy grading by digital curvelet transform. Comput. Math. Med. 2020 (2012). Article 761901.
  11. 11.
    Antal, B., Hajdu, A.: Improving microaneurysm detection in color fundus images by using context-aware approaches. Comput. Med. Imaging Graph. 37, 403–408 (2013)CrossRefGoogle Scholar
  12. 12.
    Aravind, C., Ponnibala, M., Vijayachitra, S.: Automatic detection of microaneurysms and classification of diabetic retinopathy images using SVM technique. In: IJCA Proceedings on International Conference on Innovations in Intelligent Instrumentation, Optimization and Electrical Sciences ICIIIOES, vol. 11, pp. 18–22 (2013)Google Scholar
  13. 13.
    Hatanaka, Y., Inoue, T., Okumura, S., Muramatsu, C., Fujita, H.: Automated microaneurysm detection method based on double-ring filter and feature analysis in retinal fundus images. In: Soda, P. (eds.) Proceedings of the 25th International Symposium on Computer-Based Medical Systems, CBMS, USA, pp. 1–4. IEEE (2012)Google Scholar
  14. 14.
    Kose, C., Sevik, U., Ikibas, C., Erdol, H.: Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput. Methods Programs Biomed. 107, 274–293 (2012)CrossRefGoogle Scholar
  15. 15.
    Lichode, R.V., Kulkarni, P.S.: Automatic diagnosis of diabetic retinopathy by hybrid multilayer feed forward neural network. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2(9), 1727–1733 (2013)Google Scholar
  16. 16.
    Prakash, J., Sumanthi, K.: Detection and classification of microaneurysms for diabetic retinopathy. Int. J. Eng. Res. Appl. 4, 31–36 (2013)Google Scholar
  17. 17.
    Punnolil, A.: A novel approach for diagnosis and severity grading of diabetic maculopathy. In: Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics, New York, pp. 1230–1235. IEEE (2013)Google Scholar
  18. 18.
    Saleh, M.D., Eswaran, C.: An automated decision-support system for non-proliferative diabetic retinopathy disease based on Mas and HAs detection. Comput. Methods Programs Biomed. 108, 186–196 (2012)CrossRefGoogle Scholar
  19. 19.
    Selvathi, D., Prakash, N.B., Balagopal, N.: Automated detection of diabetic retinopathy for early diagnosis using feature extraction and support vector machine. Int. J. Emerg. Technol. Adv. Eng. 2(11), 762–767 (2012)Google Scholar
  20. 20.
    Sopharak, A., Uyyanonvara, B., Barman, S.: Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images. Maejo Int. J. Sci. Technol. 7(2), 294–314 (2013)Google Scholar
  21. 21.
    Sujithkumar, S.B., Vipula, S.: Automatic detection of diabetic retinopathy in non-dilated RGB retinal fundus images. Int. J. Comput. Appl. 47(19), 26–32 (2012)Google Scholar
  22. 22.
    Sundhar, C., Archana, D.: Automatic screening of fundus images for detection of diabetic retinopathy. Int. J. Commun. Comput. Technol. 2(1), 100–105 (2014)Google Scholar
  23. 23.
    Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C.: Automatic screening and classification of diabetic retinopathy fundus images. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 113–122. Springer, Cham (2014). Scholar
  24. 24.
    Rahim, S.S., Jayne, C., Palade, V., Shuttleworth, J.: Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. J. Neural Comput. Appl. 521, 1–16 (2015)Google Scholar
  25. 25.
    Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C., Omar, R.N.R.: Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In: Iliadis, L., Jayne, C. (eds.) EANN 2015. CCIS, vol. 517, pp. 69–79. Springer, Cham (2015). Scholar
  26. 26.
    Rahim, S.S., Palade, V., Jayne, C., Holzinger, A., Shuttleworth, J.: Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 379–388. Springer, Cham (2015). Scholar
  27. 27.
    Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C.: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inf. 3(4), 249–267 (2016). Scholar
  28. 28.
    Lam, C., Yi, D., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. In: AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science 2017, pp. 147–155 (2018)Google Scholar
  29. 29.
    Voets, M., Mollersen, K., Bongo, L.A.: Replication study: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs (2018).
  30. 30.
    Xu, K., Feng, D., Mi, H.: Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12), 1–7 (2017)Google Scholar
  31. 31.
    Rakhlin, A.: Diabetic retinopathy detection through integration of deep learning classification framework (2017).
  32. 32.
    Gulshan, V., Peng, L., Coram, M., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 1–9 (2016)CrossRefGoogle Scholar
  33. 33.
    Rajanna, A.R., Aryafar, K., Ramchandran, R., Sisson, C., Shokoufandeh, A., Ptucha, R.: Neural networks with manifold learning for diabetic retinopathy detection. In: Proceedings of IEEE Western NY Image & Signal Processing Workshop (2016).
  34. 34.
    Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 1–6 (2016)CrossRefGoogle Scholar
  35. 35.
    Ghosh, R., Ghosh, K., Maitra, S.: Automatic detection and classification of diabetic retinopathy stages using CNN. In: 4th International Conference on Signal Processing and Integrated Networks (SPIN), USA, pp. 550–554. IEEE (2017)Google Scholar
  36. 36.
    Chudzik, P., Majumdar, S., Caliva, F., Al-Diri, B., Hunter, A.: Microaneurysm detection using deep learning and interleaved freezing. In: Proceedings of SPIE 10574, Medical Imaging 2018: Image Processing 1057411, pp. 1–9 (2018)Google Scholar
  37. 37.
    Lam, C., Yu, C., Huang, L., Rubin, D.: Retinal lesion detection with deep learning using image patches. Invest. Ophthalmol. Vis. Sci. 59(1), 590–596 (2018)CrossRefGoogle Scholar
  38. 38.
    Hatanaka, Y., Ogohara, K., Sunayama, W., Miyashita, M., Muramatsu, C., Fujita, H.: Automatic microaneurysms detection on retinal images using deep convolution neural network. In: International Workshop on Advanced Image Technology (IWAIT), pp. 1–2 (2018)Google Scholar
  39. 39.
    Dai, L., et al.: Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans. Med. Imaging 37(5), 1149–1161 (2018)CrossRefGoogle Scholar
  40. 40.
    Harangi, B., Toth, J., Hajdu, A.: Fusion of deep convolutional neural networks for microaneurysm detection in color fundus images. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3705–3708 (2018)Google Scholar
  41. 41.
    Shan, J., Li, L.: A deep learning method for microaneurysm detection in fundus images. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 357–358 (2016)Google Scholar
  42. 42.
    Haloi, M.: Improved microaneurysm detection using deep neural network (2016).
  43. 43.
    Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017)CrossRefGoogle Scholar
  44. 44.
    Toh, K.K.V., Mat Isa, N.A.: Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process. Lett. 17(3), 281–284 (2010)CrossRefGoogle Scholar
  45. 45.
    Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)CrossRefGoogle Scholar
  46. 46.
    Hu, Z., Tan, J., Wang, Z., Zhang, K., Zhang, L., Sun, Q.: Deep learning for image-based cancer detection and diagnosis – a survey. Pattern Recogn. 83, 134–149 (2018)CrossRefGoogle Scholar
  47. 47.
    Couture, H.D., et al.: Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 30, 1–8 (2018)Google Scholar
  48. 48.
    Holzinger, A., Kieseberg, P., Weippl, E., Tjoa A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa A., Weippl E. (eds) Machine Learning and Knowledge Extraction, CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018).
  49. 49.
    Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Mueller, H.: causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discovery, 9(4) (2019).
  50. 50.
    Pearl, J.: Causality: Models, Reasoning, and Inference (2nd Ed.). Cambridge, Cambridge University Press (2009)Google Scholar
  51. 51.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Inf. 3(2), 119–131. Springer Nature

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sarni Suhaila Rahim
    • 1
    • 2
    Email author
  • Vasile Palade
    • 1
  • Ibrahim Almakky
    • 1
  • Andreas Holzinger
    • 3
  1. 1.Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK
  2. 2.Faculty of Information and Communication TechnologyUniversiti Teknikal Malaysia MelakaDurian TunggalMalaysia
  3. 3.Institute for Medical Informatics, Statistics and DocumentationMedical University GrazGrazAustria

Personalised recommendations