Advertisement

Biobanks and Biobank-Based Artificial Intelligence (AI) Implementation Through an International Lens

  • Zisis KozlakidisEmail author
Chapter
  • 57 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12090)

Abstract

Artificial Intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be the exclusive domain of human experts. One such area is biobanking, which forms a natural extension for AI-driven activities, both because biobanking is a foundational activity for downstream precision medical research, as well as because biobanking can increasingly accommodate high-throughput sample-, image- and data-handling operational models. The increasing AI-driven appetite for higher volumes of data and images often necessitates the cross-border collaboration of biobanks; likely to develop to one of the major forces dictating the international biobanking collaboration in the near future. However there are significant challenges ahead at the same time: firstly key practical issues surrounding the implementation of AI into existing research and clinical workflows, including data standardization, data sharing and interoperability across multiple platforms. Secondly governance concerns such as privacy, transparency of algorithms, data interpretation and how the latter might impact patient safety. Here a high-level summary of these opportunities and challenges will be presented from the perspective of AI driving more and stronger international collaborations in biobanking.

Keywords

Biobank Biobanking standards Artificial Intelligence High-throughput Implementation drivers 

References

  1. 1.
    Burnham, C.A., Dunne Jr., W.M., Greub, G., Novak, S.M., Patel, R.: Automation in the clinical microbiology laboratory. Clin. Chem. 59(12), 1696–1702 (2013)CrossRefGoogle Scholar
  2. 2.
    Bourbeau, P.P., Ledeboer, N.A.: Automation in clinical microbiology. J. Clin. Microbiol. 51(6), 1658–1665 (2013)CrossRefGoogle Scholar
  3. 3.
    Beam, A.L., Kohane, I.S.: Translating artificial intelligence into clinical care. JAMA 316(22), 2368–2369 (2016)CrossRefGoogle Scholar
  4. 4.
    Parodi, B.: Biobanks: a definition. In: Mascalzoni, D. (ed.) Ethics, Law and Governance of Biobanking. The International Library of Ethics, Law and Technology, vol. 14, pp. 15–19. Springer, Dordrecht (2015).  https://doi.org/10.1007/978-94-017-9573-9_2CrossRefGoogle Scholar
  5. 5.
    Roses, A.D.: Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2000)CrossRefGoogle Scholar
  6. 6.
    Dakappa, P.H., Prasad, K., Rao, S.B., Bolumbu, G., Bhat, G.K., Mahabala, C.: Classification of infectious and noninfectious diseases using artificial neural networks from 24-hour continuous tympanic temperature data of patients with undifferentiated fever. Crit. Rev. Biomed. Eng. 46(2), 173–183 (2018)CrossRefGoogle Scholar
  7. 7.
    Tou, H., Yao, L., Wei, Z., Zhuang, X., Zhang, B.: Automatic infection detection based on electronic medical records. BMC Bioinf. 19(Suppl 5), 117 (2018)CrossRefGoogle Scholar
  8. 8.
    Nault, V., Pepin, J., Beaudoin, M., Perron, J., Moutquin, J.M., Valiquette, L.: Sustained impact of a computer-assisted antimicrobial stewardship intervention on antimicrobial use and length of stay. J. Antimicrob. Chemother. 72(3), 933–940 (2017)Google Scholar
  9. 9.
    Wong, Z.S.Y., Zhou, J., Zhang, Q.: Artificial intelligence for infectious disease big data analytics. Infect. Dis. Health 24(1), 44–48 (2019)CrossRefGoogle Scholar
  10. 10.
    Van den Wijngaert, S., et al.: Bigger and better? Representativeness of the influenza a surveillance using one consolidated clinical microbiology laboratory data set as compared to the Belgian sentinel network of laboratories. Front. Public Health 7, 150 (2019)CrossRefGoogle Scholar
  11. 11.
    Poplin, R., Varadarajan, A., Blumer, K., Liu, Y., McConnell, M., Corrado, G., et al.: Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. Nat. Biomed. Eng. 2, 158–164 (2018)CrossRefGoogle Scholar
  12. 12.
    Niehous, K., et al.: Early stage colorectal cancer detection using artificial intelligence and whole-genome sequencing of cell-free DNA in a retrospective cohort of 1,040 patients. Am. J. Gastroenterol. 113, S169 (2018)CrossRefGoogle Scholar
  13. 13.
    Sammani, A., Jansen, M., Linschoten, M., et al.: UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking. Neth Heart J. 27(9), 426–434 (2019)CrossRefGoogle Scholar
  14. 14.
    Holzinger, A., Roecker, C., Ziefle, M.: Smart Health. Springer, Switzerland (2015).  https://doi.org/10.1007/978-3-319-16226-3CrossRefGoogle Scholar
  15. 15.
    Thompson, R., et al.: RD-connect: an integrated platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research. J. Gen. Int. Med. 29, S780–7 (2014)CrossRefGoogle Scholar
  16. 16.
    Vande Loock, K., Van der Stock, E., Debucquoy, A., et al.: The Belgian virtual tumorbank: a tool for translational cancer research. Front. Med. 6, 120 (2019)CrossRefGoogle Scholar
  17. 17.
    NIH Human Microbiome Portfolio Analysis Team: A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007–2016. Microbiome. 7(1), 31 (2019)Google Scholar
  18. 18.
    Mendy, M., Caboux, E., Sylla, B.S., Dillner, J., Chinquee, J., Wild, C.: Infrastructure and facilities for human biobanking in low- and middle-income countries: a situation analysis. Pathobiology 81, 252–260 (2014)CrossRefGoogle Scholar
  19. 19.
    Simeon-Dubach, D., Henderson, M.K.: Sustainability in Biobanking. Biopreserv. Biobank. 12(5), 287–288 (2014)CrossRefGoogle Scholar
  20. 20.
    Hulsen, T., et al.: From big data to precision medicine. Front. Med. 6, 34 (2019)CrossRefGoogle Scholar
  21. 21.
    Doucet, M., Yuille, M., Georghiou, L., Dagher, G.: Biobank sustainability: current status and future prospects. J. Bioreposit. Sci. Appl. Med. 5, 1–7 (2017)CrossRefGoogle Scholar
  22. 22.
    Caulfield, T., Burningham, S., Joly, Y., et al.: A review of the key issues associated with the commercialization of biobanks. J. Law Biosci. 1(1), 94–110 (2014)CrossRefGoogle Scholar
  23. 23.
    Kinkorová, J., Topolčan, O.: Biobanks in horizon 2020: sustainability and attractive perspectives. EPMA J. 9, 345 (2018)CrossRefGoogle Scholar
  24. 24.
    Simeon-Dubach, D., Kozlakidis, Z.: New standards and updated best practices will give modern biobanking a boost in professionalism. Biopreserv. Biobank. 16(1), 1–2 (2018)CrossRefGoogle Scholar
  25. 25.
    Gliklich, R.E., Dreyer, N.A.: Registries for evaluating patient outcomes: a user’s guide. 3rd edition Editor: Michelle B Leavy. Agency for Healthcare Research and Quality (U.S.), Rockville, MD (2014)Google Scholar
  26. 26.
    Cadigan, R.J., Juengst, E., Davis, A., Henderson, G.: Underutilization of specimens in biobanks: an ethical as well as a practical concern? Genet. Med. 16(10), 738–740 (2014)CrossRefGoogle Scholar
  27. 27.
    Catchpoole, D.R.: Biohoarding: treasures not seen, stories not told. J. Health Serv. Res. Policy 21(2), 140–142 (2016)CrossRefGoogle Scholar
  28. 28.
    Kozlakidis, Z.: Biobanking with big data: a need for developing “big data metrics”. Biopreserv. Biobank. 14(5), 450–451 (2016)CrossRefGoogle Scholar
  29. 29.
    Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care—addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018)CrossRefGoogle Scholar
  30. 30.
    Paul, S., Gade, A., Mallipeddi, S.: The state of cloud-based biospecimen and biobank data management tools. Biopreserv. Biobank. 15(2), 169–172 (2017)CrossRefGoogle Scholar
  31. 31.
    Barchi, F., Little, M.T.: National ethics guidance in Sub-Saharan Africa on the collection and use of human biological specimens: a systematic review. BMC Med. Ethics 16, 64 (2016)CrossRefGoogle Scholar
  32. 32.
    Ledeboer, N.A., Dallas, S.D.: The automated clinical microbiology laboratory: fact or fantasy? J. Clin. Microbiol. 52(9), 3140–3146 (2014)CrossRefGoogle Scholar
  33. 33.
    Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., Kitai, T.: Big data, artificial intelligence, and cardiovascular precision medicine. J. Am. Coll. Cardiol. 69(21), 2657–2664 (2017)CrossRefGoogle Scholar
  34. 34.
    Caulfield, T., Borry, P., Gottweis, H.: Industry involvement in publicly funded biobanks. Nat. Rev. Genet. 15, 220 (2014)CrossRefGoogle Scholar
  35. 35.
    Hämäläinen, I., Törnwall, O., Simell, B., Zatloukal, K., Perola, M., van Ommen, G.-J.B.: Role of academic biobanks in public–private partnerships in the european biobanking and biomolecular resources research infrastructure community. Biopreserv. Biobank. 17(1), 46–51 (2019)CrossRefGoogle Scholar
  36. 36.
    Hofman, P., Bréchot, C., Zatloukal, K.: Public-private relationship in biobanking: a still underestimated key component of open innovation. Virchows Arch. 464(1), 3–9 (2014)CrossRefGoogle Scholar
  37. 37.
    Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.R.: Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018)CrossRefGoogle Scholar
  38. 38.
    Garattini, C., Raffle, J., Aisyah, D.N., Sartain, F., Kozlakidis, Z.: Big data analytics, infectious diseases and associated ethical impacts. Philos. Technol. 32(1), 69–85 (2019)CrossRefGoogle Scholar
  39. 39.
    Patrzyk, P.M., Link, D., Marewski, J.N.: Human-like machines: transparency and comprehensibility. Behav. Brain Sci. 40, e276 (2017)CrossRefGoogle Scholar
  40. 40.
    Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Mueller, H.: Causability and explainabilty of artificial intelligence in medicine. WIREs Data Min. Knowl. Discov. 9, e1312 (2019)Google Scholar
  41. 41.
    Sussillo, D., Barak, O.: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.International Agency for Research on CancerLyonFrance

Personalised recommendations