Advertisement

Visual Perception Ranking of Chess Players

  • Laercio R. Silva JuniorEmail author
  • Carlos E. Thomaz
Conference paper
  • 144 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12131)

Abstract

In this work, we have carried out a performance analysis of chess players comparing a standard ranking measure with a novel one proposed here. Using the idea of treating participants eye movements, when answering several on-screen valid chess questions of distinguished complexities, as high-dimensional spatial attention patterns we have shown that expertise is consistently associated with the ability to process visual information holistically using fewer fixations rather than locally focusing on individual pieces. These findings might disclose new insights for predicting chess skills.

Keywords

Visual perception Eye-tracking Chess 

References

  1. 1.
    Groot, A.: Het denken van den schaker: een experimenteel-psychologische studie, p. 315. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam (1946)Google Scholar
  2. 2.
    Chase, W., Simon, H.: Perception in chess. Cogn. Psychol. 4(1), 55–81 (1973)CrossRefGoogle Scholar
  3. 3.
    Chase, W., Simon, H.: The mind’s eye in chess. Vis. Inf. Process. 215–281 (1973)Google Scholar
  4. 4.
    Campitelli, G., Gobet, F.: The mind’s eye in blindfold chess. Eur. J. Cogn. Psychol. 17(1), 23–45 (2005)CrossRefGoogle Scholar
  5. 5.
    Duan, X., et al.: Functional organization of intrinsic connectivity networks in Chinese-chess experts. Brain Res. 1558, 33–43 (2014)Google Scholar
  6. 6.
    Krawczyk, D., Boggan, A., McClelland, M., Bartlett, J.: The neural organization of perception in chess experts. Neurosci. Lett. 499(2), 64–69 (2011)CrossRefGoogle Scholar
  7. 7.
    Bilalić, M., Langner, R., Ulrich, R., Grodd, W.: Many faces of expertise: fusiform face area in chess experts and novices. J. Neurosci. 31(28), 10206–10214 (2011)CrossRefGoogle Scholar
  8. 8.
    Hambrick, D., Campitelli, G., Macnamara, B.: Cognitive Processes in Chess, The Science of Expertise: Behavioral, Neural, and Genetic Approaches to Complex Skill. Routledge, Abingdon (2017)Google Scholar
  9. 9.
    Ericsson, K., Hoffman, R., Kozbelt, A.: The Cambridge Handbook of Expertise and Expert Performance. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  10. 10.
    Bilalić, M.: The double take of expertise: neural expansion in associated with outstanding performance. Curr. Dir. Psychol. Sci. 27(6), 462–469 (2018)CrossRefGoogle Scholar
  11. 11.
    Gobet, F.: The future of expertise: the need for a multidisciplinary approach. J. Expertise 1(2), 1–7 (2018)Google Scholar
  12. 12.
    Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J., Miletich, R.: Brain activity in chess playing. Nature 369, 191 (1994)Google Scholar
  13. 13.
    Volke, H.-J., Dettmar, P., Richter, P., Rudolf, M., Buhss, U.: On-coupling and off-coupling of neocortical areas in chess experts and novices. J. Psychophysiol. 16, 23–36 (2002)CrossRefGoogle Scholar
  14. 14.
    Silva-Junior, L., Thomaz, C.: A multivariate correlation assessment of chess proficiency using brain signals. In: Proceedings of the XV Workshop de Visao Computacional (WVC), pp. 10–15. IEEE, Brazil (2019)Google Scholar
  15. 15.
    Reingold, E., Sheridan, H.: Eye movements and visual expertise in chess and medicine. In: Oxford Handbook on Eye Movements, USA (2011)Google Scholar
  16. 16.
    Sheridan, H., Reingold, E.: Expert vs. novice differences in the detection of relevant information during a chess game: evidence from eye movements. Front. Psychol. 5, 941 (2014)Google Scholar
  17. 17.
    Sheridan, H., Reingold, E.: Chess players’ eye movements reveal rapid recognition of complex visual patterns: evidence from a chess-related visual search task. J. Vis. 17(3), 4 (2017)Google Scholar
  18. 18.
    Elo, A.: The Rating of Chess Players. Arco Pub, Nagoya (1978)Google Scholar
  19. 19.
    Johnson, R., Wichern, D.: Applied Multivariate Statistical Analysis. Prentice Hall, New Jersey (1998)Google Scholar
  20. 20.
    Thomaz, C., Kitani, E., Gillies, D.: A maximum uncertainty LDA-based approach for limited sample size problems - with application to face recognition. J. Braz. Comput. Soc. 25, 7–18 (2006)Google Scholar
  21. 21.
    Costa, J., Soares, C.: A weighted rank measure of correlation. Aust. New Zealand J. Stat. 47(4), 515–529 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centro Universitario FEISao PauloBrazil

Personalised recommendations