Advertisement

2D Bidirectional Gated Recurrent Unit Convolutional Neural Networks for End-to-End Violence Detection in Videos

  • Abdarahmane Traoré
  • Moulay A. AkhloufiEmail author
Conference paper
  • 137 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12131)

Abstract

Abnormal behavior detection, action recognition, fight and violence detection in videos is an area that has attracted a lot of interest in recent years. In this work, we propose an architecture that combines a Bidirectional Gated Recurrent Unit (BiGRU) and a 2D Convolutional Neural Network (CNN) to detect violence in video sequences. A CNN is used to extract spatial characteristics from each frame, while the BiGRU extracts temporal and local motion characteristics using CNN extracted features from multiple frames. The proposed end-to-end deep learning network is tested in three public datasets with varying scene complexities. The proposed network achieves accuracies up to 98%. The obtained results are promising and show the performance of the proposed end-to-end approach.

Keywords

CNN GRU Abnormal behavior detection Violence detection Video classification 

References

  1. 1.
    Abdali, A.M.R., Al-Tuma, R.F.: Robust real-time violence detection in video using CNN And LSTM. In: 2019 2nd Scientific Conference of Computer Sciences (SCCS), pp. 104–108, March 2019Google Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005Google Scholar
  3. 3.
    Ding, C., Fan, S., Zhu, M., Feng, W., Jia, B.: Violence detection in video by using 3D convolutional neural networks. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8888, pp. 551–558. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14364-4_53CrossRefGoogle Scholar
  4. 4.
    Ditsanthia, E., Pipanmaekaporn, L., Kamonsantiroj, S.: Video representation learning for CCTV-based violence detection. In: 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), pp. 1–5, December 2018Google Scholar
  5. 5.
    Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6, June 2012Google Scholar
  6. 6.
    Kanai, S., Fujiwara, Y., Iwamura, S.: Preventing gradient explosions in gated recurrent units. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS 2017, pp. 435–444. Curran Associates Inc., Red Hook (2017)Google Scholar
  7. 7.
    Kanojia, G., Kumawat, S., Raman, S.: Exploring temporal differences in 3D convolutional neural networks (2019)Google Scholar
  8. 8.
    Li, C., Zhu, L., Zhu, D., Chen, J., Pan, Z., Li, X., Wang, B.: End-to-end multiplayer violence detection based on deep 3D CNN. In: Proceedings of the 2018 VII International Conference on Network, Communication and Computing, ICNCC 2018, Taipei City, Taiwan, pp. 227–230. ACM, New York (2018)Google Scholar
  9. 9.
    Mohamed, E., Mohamad, H., Massih, M.A.E.: Real life violence situations dataset. https://kaggle.com/mohamedmustafa/real-life-violence-situations-dataset. Accessed January 2020
  10. 10.
    Morales, G., Salazar-Reque, I., Telles, J., Díaz, D.: Detecting violent robberies in CCTV videos using deep learning. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2019. IAICT, vol. 559, pp. 282–291. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-19823-7_23CrossRefGoogle Scholar
  11. 11.
    Mt, S.: Increasing crimes vs. population density in megacities. Sociol. Criminol.-Open Access 4(1), 1–2 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bermejo Nievas, E., Deniz Suarez, O., Bueno García, G., Sukthankar, R.: Violence detection in video using computer vision techniques. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 332–339. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23678-5_39CrossRefGoogle Scholar
  13. 13.
    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018Google Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 568–576. Curran Associates, Inc. (2014)Google Scholar
  15. 15.
    Soliman, M.M., Kamal, M.H., El-Massih Nashed, M.A., Mostafa, Y.M., Chawky, B.S., Khattab, D.: Violence recognition from videos using deep learning techniques. In: 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 80–85, December 2019.  https://doi.org/10.1109/ICICIS46948.2019.9014714
  16. 16.
    Song, W., Zhang, D., Zhao, X., Yu, J., Zheng, R., Wang, A.: A novel violent video detection scheme based on modified 3D convolutional neural networks. IEEE Access 7, 39172–39179 (2019)CrossRefGoogle Scholar
  17. 17.
    Sudhakaran, S., Lanz, O.: Learning to detect violent videos using convolutional long short-term memory. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, August 2017Google Scholar
  18. 18.
    Sumon, S.A., Shahria, M.D.T., Goni, M.D.R., Hasan, N., Almarufuzzaman, A.M., Rahman, R.M.: Violent crowd flow detection using deep learning. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11431, pp. 613–625. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14799-0_53CrossRefGoogle Scholar
  19. 19.
    Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 [cs, stat], May 2019. arXiv: 1905.11946
  20. 20.
    Tang, Z., Shi, Y., Wang, D., Feng, Y., Zhang, S.: Memory visualization for gated recurrent neural networks in speech recognition. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2736–2740, March 2017.  https://doi.org/10.1109/ICASSP.2017.7952654
  21. 21.
    Ullah, F.U.M., Ullah, A., Muhammad, K., Haq, I.U., Baik, S.W.: Violence detection using spatiotemporal features with 3D convolutional neural network. Sensors (Basel, Switz.) 19(11), 2472 (2019)CrossRefGoogle Scholar
  22. 22.
    Xu, X., Wu, X., Wang, G., Wang, H.: Violent video classification based on spatial-temporal cues using deep learning. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 01, pp. 319–322, December 2018Google Scholar
  23. 23.
    Zhou, P., Ding, Q., Luo, H., Hou, X.: Violent interaction detection in video based on deep learning. J. Phys: Conf. Ser. 844, 012044 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Perception, Robotics, and Intelligent Machines Research Group (PRIME), Department of Computer ScienceUniversité de MonctonMonctonCanada

Personalised recommendations