Privacy Preserving Real-Time Video Stream Change Detection Based on the Orthogonal Tensor Decomposition Models

  • Bogusław CyganekEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 385)


In this paper the video change detection method that allows for data privacy protection is proposed. Signal change detection is based on the tensor models constructed in the orthogonal tensor subspaces. Tensor methods allow for processing of any kind of multi-dimensional signals since computation of special features is not required. The proposed signal encoding method makes that person identification in the processed signal is very difficult or impossible for the unauthorized personnel. It is demonstrated that despite the input being distorted for encryption, the proposed tensor based method can still correctly identify video shots in real-time. Compared with the non-distorted signals, the obtained accuracy is only slightly lower, at the same time providing data privacy.


Data privacy Image encryption Video analysis Tensor models HOSVD Real-time algorithms 



This work was supported by the Polish National Science Center NCN under the grant no. 2016/21/B/ST6/01461.


  1. 1.
    Aja-Fernández, S., de Luis Garcia, R., Tao, D., Li, X.: Tensors in Image Processing and Computer Vision. Springer, Heidelberg (2009).
  2. 2.
    Asghar, M.N., Hussain, F., Manton, R.: Video indexing: a survey. Int. J. Comput. Inf. Technol. 03(01), 148–169 (2014)Google Scholar
  3. 3.
    Baaziz, N., Lolo, N., Padilla, O., Petngang, F.: Security and privacy protection for automated video surveillance. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, Giza, pp. 17–22 (2007)Google Scholar
  4. 4.
    Boult, T.E.: PICO: privacy through invertible cryptographic obscuration. In: Computer Vision for Interactive and Intelligent Environment (CVIIE 2005), USA, pp. 27–38 (2005)Google Scholar
  5. 5.
    Çiftçi, S., Akyüz, A.O., Ebrahimi, T.: A reliable and reversible image privacy protection based on false colors. IEEE Trans. Multimedia 20(1), 68–81 (2018)CrossRefGoogle Scholar
  6. 6.
    de Avila, S.E.F., Lopes, A.P.B., Luz da Jr., A., Araújo, A.A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32, 56–68 (2011)Google Scholar
  7. 7.
    Chu, K.-Y., Kuo Y.-H., Hsu, W.H.: Real-time privacy-preserving moving object detection in the cloud. In: Proceedings of the 21st ACM International Conference on Multimedia, Association for Computing Machinery, NY, USA, pp. 597–600 (2013)Google Scholar
  8. 8.
    Cyganek, B.: Object Detection and Recognition in Digital Images: Theory and Practice. Wiley, Hoboken (2013)Google Scholar
  9. 9.
    Cyganek, B.: Hybrid ensemble of classifiers for logo and trademark symbols recognition. Soft. Comput. 19(12), 3413–3430 (2015)CrossRefGoogle Scholar
  10. 10.
    Cyganek, B.: Thumbnail tensor - a method for multidimensional data streams clustering with an efficient tensor subspace model in the scale-space. Sensors 19, 4088 (2019)CrossRefGoogle Scholar
  11. 11.
    DeRecLib. Accessed 21 Mar 2020
  12. 12.
    Domingo-Ferrer, J., Farràs, O., Ribes-González, J., Sánchez, D.: Privacy-preserving cloud computing on sensitive data: a survey of methods, products and challenges. Comput. Commun. 140–141, 38–60 (2019)CrossRefGoogle Scholar
  13. 13.
    Du, L., Zhang, W., Fu, H., Ren, W., Zhang, X.. An efficient privacy protection scheme for data security in video surveillance. J. Vis. Commun. Image Repr. 59 (2019)Google Scholar
  14. 14.
    Del Fabro, M., Böszörmenyi, L.: State-of-the-art and future challenges in video scene detection: a survey. Multimedia Syst. 19(5), 427–454 (2013)CrossRefGoogle Scholar
  15. 15.
    Grabek, J., Cyganek, B.: Speckle noise filtering in side-scan sonar images based on the Tucker tensor decomposition. Sensors 19, 2903 (2019)CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    Korshunov, P., Ebrahimi, T.: Using warping for privacy protection in video surveillance. In: 18th International Conference on Digital Signal Processing (DSP), Fira, pp. 1–6 (2013)Google Scholar
  20. 20.
    de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mahmoud, K.M., Ismail, M.A., Ghanem, N.M.: VSCAN: an enhanced video summarization using density-based spatial clustering. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 733–742. Springer, Heidelberg (2013). Scholar
  22. 22.
    Ou, S.-H., Lee, C.-H., Somayazulu, V.S., Chen, Y-K., Chien S-Y.: On-line multi-view video summarization for wireless video sensor network. IEEE J. Sel. Topics Sig. Process. 9(1), 165–179 (2015)Google Scholar
  23. 23.
    Padilla-Lopez, J.R., Chaaraoui, A.A., Florez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42, 4177–4195 (2016)Google Scholar
  24. 24.
    Qayyum, H., Majid, M., Haq, E., Anwar, S.: Generation of personalized video summaries by detecting viewer’s emotion using electroencephalography. J. Vis. Com. Image 65, 102672 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations