Advertisement

Algebraic Bayesian Networks: Parallel Algorithms for Maintaining Local Consistency

  • Nikita A. Kharitonov
  • Anatolii G. MaksimovEmail author
  • Alexander L. Tulupyev
Conference paper
  • 12 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1156)

Abstract

Algebraic Bayesian networks belong to the class of machine-learning probabilistic graphical models. One of the main tasks during researching machine learning models is the optimization of their time of work. This paper presents approaches to parallelizing algorithms for maintaining local consistency in algebraic Bayesian networks as one of the ways to optimize their time of work. An experiment provided to compare the time of parallel and nonparallel realizations of algorithms for maintaining local consistency.

Keywords

Algebraic Bayesian networks Probabilistic graphic models Consistency Parallel computing Knowledge pattern Machine learning Bayesian networks Probabilistic-logical inference 

Notes

Acknowledgments

The research was carried out in the framework of the project on SPIIRAS governmental assignment No. 0073-2019-0003, with the financial support of the RFBR (project No. 18-01-00626: Methods of representation, synthesis of truth estimates and machine learning in algebraic Bayesian networks and related knowledge models with uncertainty: the logic-probability approach and graph systems).

References

  1. 1.
    Pelissari, R., Oliveira, M.C., Ben Amor, S., Abackerli, A.J.: A new FlowSort-based method to deal with information imperfections in sorting decision-making problems. Eur. J. Oper. Res. 276(10), 235–246 (2019).  https://doi.org/10.1016/j.ejor.2019.01.006MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Saha, I., Sarkar, J.P., Maulik, U.: Integrated rough fuzzy clustering for categorical data analysis. Fuzzy Sets Syst. 361, 1–32 (2019).  https://doi.org/10.1016/j.fss.2018.02.007MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, J., Wang, J.: An association-based evolutionary ensemble method of variable selection. Expert Syst. Appl. 124, 143–155 (2019).  https://doi.org/10.1016/j.eswa.2019.01.039CrossRefGoogle Scholar
  4. 4.
    Tulupyev, A.L., Nikolenko, S.I., Sirotkin, A.V.: Fundamentals of the Theory of Bayesian Networks: Textbook. St.-Petersburg University, Saint-Petersburg (2019). (in Russian)Google Scholar
  5. 5.
    Ye, J., Li, J., Newman, M.G., Adams, R.B., Wang, J.Z.: Probabilistic multigraph modeling for improving the quality of crowdsourced affective data. IEEE Trans. Affect. Comput. 10(1), 115–128 (2019).  https://doi.org/10.1109/TAFFC.2017.2678472CrossRefGoogle Scholar
  6. 6.
    Qiang, Y.-T., Fu, Y.-W., Yu, X., Guo, Y.-W., Zhou, Z.-H., Sigal, L.: Learning to generate posters of scientific papers by probabilistic graphical models. J. Comput. Sci. Technol. 34(1), 155–169 (2019).  https://doi.org/10.1007/s11390-019-1904-1CrossRefGoogle Scholar
  7. 7.
    Vogel, K., Weise, L., Schroter, K., Thieken, A.H.: Identifying driving factors in flood-damaging processes using graphical models. Water Resour. Res. 54(11), 8864–8889 (2018).  https://doi.org/10.1029/2018WR022858CrossRefGoogle Scholar
  8. 8.
    Buscombe, D., Grams, P.E.: Probabilistic substrate classification with multispectral acoustic backscatter: a comparison of discriminative and generative models. Geosciences 8(11) (2018). Article no. UNSP395.  https://doi.org/10.3390/geosciences8110395
  9. 9.
    Huang, Z.M., Yang, L., Jiang, W.: Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Network. Appl. Math. Comput. 347, 417–428 (2019).  https://doi.org/10.1016/j.amc.2018.11.036MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marella, D., Vicard, P.: Toward an integrated Bayesian network approach to measurement error detection and correction. Commun. Stat.-Simul. Comput. 48(2), 544–555 (2019).  https://doi.org/10.1080/03610918.2017.1387664MathSciNetCrossRefGoogle Scholar
  11. 11.
    Suwanwimolkul, S., Zhang, L., Gong, D., Zhang, Z., Chen, C., Ranasinghe, D.C., Shi, J.Q.: An adaptive Markov random field for structured compressive sensing. IEEE Trans. Image Process. 28(3), 1556–1570 (2019).  https://doi.org/10.1109/TIP.2018.2878294MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dolgiy, A.I., Kovalev, S.M., Kolodenkova, A.E.: Processing heterogeneous diagnostic information on the basis of a hybrid neural model of Dempster-Shafer. Commun. Comput. Inf. Sci. 934, 79–90 (2018).  https://doi.org/10.1007/978-3-030-00617-4_8CrossRefGoogle Scholar
  13. 13.
    Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017).  https://doi.org/10.1016/j.engappai.2017.01.013CrossRefGoogle Scholar
  14. 14.
    Tai, W.P., Teng, Q.Y., Zhou, Y.M., Zhou, J.P., Wang, Z.: Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control. Appl. Math. Comput. 354, 115–127 (2019).  https://doi.org/10.1016/j.amc.2019.02.028MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tulupyev, A.L.: Algebraic Bayesian Networks: Global Logical and Probabilistic Inference in Joint Trees: A Tutorial, 2nd edn. SPb: VVM, Saint-Petersburg (2019). (in Russian)Google Scholar
  16. 16.
    Tulupyev, A.L.: Algebraic Bayesian Networks: Local Logical and Probabilistic Inference: A Tutorial, 2nd edn. SPb: VVM, Saint-Petersburg (2019). (in Russian)Google Scholar
  17. 17.
    Kharitonov, N.A., Maximov, A.G., Tulupyev, A.L.: Algebraic Bayesian networks: the use of parallel computing while maintaining various degrees of consistency. Studies in Systems, Decision and Control, vol. 199, pp. 696–704 (2019).  https://doi.org/10.1007/978-3-030-12072-6_56
  18. 18.
    Zhao, L., Zhou, Y.H., Lu, H.P., Fujita, H.: Parallel computing method of deep belief networks and its application to traffic flow prediction. Knowl.-Based Syst. 163, 972–987 (2019).  https://doi.org/10.1016/j.knosys.2018.10.025CrossRefGoogle Scholar
  19. 19.
    Kharitonov N., Tulupyev A., Zolotin A.: Software implementation of reconciliation algorithms in algebraic Bayesian networks. In: Proceedings of 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 8–10 (2017).  https://doi.org/10.1109/SCM.2017.7970479
  20. 20.
    Mal’chevskaya, E.A., Berezin, A.I., Zolotin, A.A., Tulupyev, A.L.: Algebraic Bayesian networks: local probabilistic-logic inference machine architecture and set of minimal joint graphs. Advances in Intelligent Systems and Computing, vol. 451, pp. 69–79 (2016)Google Scholar
  21. 21.
    Abramov, M.V., Azarov, A.A.: Identifying user’s of social networks psychological features on the basis of their musical preferences. In: Proceedings of 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 90–92 (2017).  https://doi.org/10.1109/SCM.2017.7970504
  22. 22.
    Bagretsov, G.I., Shindarev, N.A., Abramov, M.V., Tulupyeva, T.V.: Approaches to development of models for text analysis of information in social network profiles in order to evaluate user’s vulnerabilities profile. In: Proceedings of 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), pp. 93–95 (2017).  https://doi.org/10.1109/SCM.2017.7970505
  23. 23.
    Shindarev, N., Bagretsov, G., Abramov, M., Tulupyeva, T., Suvorova, A.: Approach to identifying of employees profiles in websites of social networks aimed to analyze social engineering vulnerabilities. Advances in Intelligent Systems and Computing, vol. 679, pp. 441–447 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations