Advertisement

Organizational Learning in the Age of Data

  • Andrew D. BanasiewiczEmail author
Conference paper
  • 34 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 319)

Abstract

Traditionally, organizational learning has been viewed as a human-centric endeavor, but the rise of big data and advanced data analytic technologies are compelling a fundamental reconceptualization of the scope and modalities of organizational learning. Building on the foundation of explicit differentiation between episodic vs. ongoing learning inputs and new vs. cumulative learning outcomes, this article proposes a new typology of organizational learning modalities, which explicitly distinguishes between human reason-centric theoretical and experiential learning, and technology-centric computational and simulational learning modalities.

Keywords

Organizational learning Computational learning Simulational learning 

References

  1. Agrawal, D.: Analytics based decision making. J. Indian Bus. Res. 6(4), 332–340 (2014)CrossRefGoogle Scholar
  2. Akgun, A.E., Lynn, G.S., Byrne, J.C.: Organizational learning: a socio-cognitive framework. Hum. Relat. 56(7), 839–868 (2003)CrossRefGoogle Scholar
  3. Alegre, J., Chiva, R., Fernández-Mesa, A., Ferreras-Méndez, J.: Shedding New Lights on Organisational Learning, Knowledge and Capabilities. Cambridge Scholars Publishing, Newcastle upon Tyne (2014)Google Scholar
  4. Alpar, P., Schulz, M.: Self-service business intelligence. Bus. Inf. Syst. Eng. 58(2), 151–155 (2016)CrossRefGoogle Scholar
  5. Andreopoulos, A., Tsotsos, J.: A computational learning theory of active object recognition under uncertainty. Int. J. Comput. Vis. 101(1), 95–142 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Arai, A., Fan, Z., Dunstan, M., Shibasaki, R.: Comparative perspective of human behavior patterns to uncover ownership bias among mobile phone users. Int. J. Geo-Inform. 5(6), 1–12 (2016)Google Scholar
  7. Arbib, M.: The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  8. Argyris, C., Schon, D.A.: Organizational Learning: A Theory of Action Perspective. Addison-Wesley, Reading (1978)Google Scholar
  9. Arora, A.: The “organization” as an interdisciplinary learning zone: using a strategic game to integrate learning about supply chain management and advertising. Learn. Organ. 19(2), 121–133 (2012)CrossRefGoogle Scholar
  10. Arrow, K.: The economic implications of learning by doing. Rev. Econ. Stud. 29(3), 155–173 (1962)CrossRefGoogle Scholar
  11. Banasiewicz, A.D.: Marketing Database Analytics: Transforming Data for Competitive Advantage. Routledge, New York (2013)CrossRefGoogle Scholar
  12. Bapuji, H., Crossan, M.: From questions to answers: Reviewing organizational learning research. Manag. Learn. 35(4), 397–417 (2004)CrossRefGoogle Scholar
  13. Benish, W.: The channel capacity of a diagnostic test as a function of test sensitivity and test specificity. Stat. Methods Med. Res. 24(6), 1044–1052 (2015)MathSciNetCrossRefGoogle Scholar
  14. Benson, J., Dresdow, S.: Systemic decision application: linking learning outcome assessment to organizational learning. J. Workplace Learn. 10(6/7), 301–307 (1998)CrossRefGoogle Scholar
  15. Betzler, R.: Is statistical learning a mechanism? Philos. Psychol. 29(6), 826–843 (2016)CrossRefGoogle Scholar
  16. Bhatt, G.D.: Information dynamics, learning and knowledge creation in organizations. Learn. Organiz. 7(2), 89–98 (2000)CrossRefGoogle Scholar
  17. Blandin, Y., Lhuisset, L., Proteau, L.: Cognitive processes underlying observational learning of motor skills. Q. J. Exp. Psychol. 52(4), 957–979 (1999)CrossRefGoogle Scholar
  18. Blank, J., Van Hulst, B., Koot, P., Van der Aa, R.: Benchmarking overhead in education: a theoretical and empirical approach. Benchmarking Int. J. 19(2), 239–254 (2012)CrossRefGoogle Scholar
  19. Bolisani, E., Scarso, E., Padova, A.: Cognitive overload in organizational knowledge management: case study research. Knowl. Process Manag. 25(4), 223–231 (2018)CrossRefGoogle Scholar
  20. Braaksma, M., Rijlaarsdam, G., Van den Bergh, H.: Observational learning and the effects of model-observer similarity. J. Educ. Psychol. 94(2), 405–415 (2002)CrossRefGoogle Scholar
  21. Brante, G., Holmqvist Olander, M., Holmquist, P., Palla, M.: Theorising teaching and learning: pre-service teachers’ theoretical awareness of learning. Eur. J. Teach. Educ. 38(1), 102–118 (2015)CrossRefGoogle Scholar
  22. Briley, D.A., Wyer, R.S., Li, E.: A dynamic view of cultural influence: a review. J. Consum. Psychol. 24(4), 557–571 (2014)CrossRefGoogle Scholar
  23. Brito, P., Barros, C.: Learning-by-consuming and the dynamics of the demand and prices of cultural goods. J. Cult. Econ. 29(2), 83–106 (2005)CrossRefGoogle Scholar
  24. Brynie, F.: Brain Sense: The Science of the Senses and How We Process the World Around Us. American Management Association, New York (2009)Google Scholar
  25. Buckley, M., et al.: Management lore continues alive and well in the organizational sciences. J. Manag. Hist. 21(1), 68–97 (2015)Google Scholar
  26. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-experimental Designs for Research. Rand McNally, Skokie (1966)Google Scholar
  27. Cangelosi, V.E., Dill, W.R.: Organizational learning: observations toward a theory. Adm. Sci. Q. 10(2), 175–203 (1965)CrossRefGoogle Scholar
  28. Caputo, A.: Overcoming judgmental biases in negotiations: a scenario-based survey analysis on third party direct intervention. J. Bus. Res. 69(10), 4304–4312 (2016)CrossRefGoogle Scholar
  29. Cheung-Blunden, V., Khan, S.: A modified peer rating system to recognise rating skill as a learning outcome. Assess. Eval. High. Educ. 43(1), 58–67 (2018)CrossRefGoogle Scholar
  30. Chiva, R., Alegre, J.: Organizational learning and organizational knowledge: towards the integration of two approaches. Manag. Learn. 36(1), 49–68 (2005)CrossRefGoogle Scholar
  31. Choi, S.: Organizational knowledge and information technology: the key resources for improving customer service in call centers. Inf. Syst. E-Bus. Manag. 16(1), 187–203 (2018)CrossRefGoogle Scholar
  32. Cohen, M.D., Sproull, L.E.: Organizational Learning. Sage, Thousand Oaks (1996)Google Scholar
  33. Contreras, D.: Psychology of Thinking. Nova Science, New York (2010)Google Scholar
  34. Cox, B., et al.: Lip service or actionable insights? Linking student experiences to institutional assessment and data-driven decision making in higher education. J. High. Educ. 88(6), 835–862 (2017)CrossRefGoogle Scholar
  35. Cristofaro, M.: Reducing biases of decision making processes in complex organizations. Manag. Res. Rev. 40(3), 270–291 (2017)CrossRefGoogle Scholar
  36. Cyert, R.M., March, J.G.: A Behavioral Theory of the Firm. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  37. Denton, J.: Organizational Learning and Effectiveness. Routledge, London (1998)Google Scholar
  38. Dezi, L., Santoro, G., Gabteni, H., Pellicelli, A.: The role of big data in shaping ambidextrous business process management. Bus. Process Manag. J. 24(5), 1163–1175 (2018)CrossRefGoogle Scholar
  39. Dixon, N.M.: Organizational learning: a review of literature with implications for HRD professionals. Hum. Resour. Dev. Q. 3(1), 29–49 (1992)CrossRefGoogle Scholar
  40. Dodgson, M.: Organizational learning: a review of some literatures. Organ. Stud. 14(3), 375–394 (1993)CrossRefGoogle Scholar
  41. Douglas Greer, R., Dudek-Singer, J., Gautreaux, G.: Observational learning. Int. J. Psychol. 41(6), 486–499 (2006)CrossRefGoogle Scholar
  42. Dubey, R., Gunasekaran, A., Childe, S., Papadopoulos, T.: Skills needed in supply chain-human agency and social capital analysis in third party logistics. Manag. Decis. 56(1), 143–159 (2018)CrossRefGoogle Scholar
  43. Ehrlich, D., Josselyn, S.: Plasticity-related genes in brain development and amygdala-dependent learning. Genes Brain Behav. 15(1), 125–143 (2016)CrossRefGoogle Scholar
  44. Estes, W.: Learning. Annu. Rev. Psychol. 7(1), 1–38 (1956)CrossRefGoogle Scholar
  45. Eva, G.: Framing skilful performance to enact organizational knowledge: Integrating data-driven and user-driven practice. Management 10(3), 255–271 (2015)Google Scholar
  46. Everaert, P., Opdecam, E., Maussen, S.: The relationship between motivation, learning approaches, academic performance and time spent. Acc. Educ. 26(1), 78–107 (2017)CrossRefGoogle Scholar
  47. Faulmüller, N., Kerschreiter, R., Mojzisch, A., Schulz-Hardt, S.: Beyond group-level explanations for the failure of groups to solve hidden profiles: the individual preference effect revisited. Group Process. Intergroup Relat. 13(5), 653–671 (2010)CrossRefGoogle Scholar
  48. Fenwick, N., Schadler, T.: Digital rewrites the rules of business. The Vision Report in the Digital Business Playbook, Forrester, 26 February 2018. https://www.forrester.com/report/Digital+Rewrites+The+Rules+Of+Business/-/E-RES137090. Accessed 30 Nov 2018
  49. Fischer, P., Lea, S., Kastenmuller, A., Greitemeyer, T., Fischer, J., Frey, D.: The process of selective exposure: why confirmatory information search weakens over time. Organ. Behav. Hum. Decis. Process. 114(1), 37–48 (2011)CrossRefGoogle Scholar
  50. Gascoigne, N., Thornton, T.: Tacit Knowledge. Routledge, London (2014)CrossRefGoogle Scholar
  51. Giorgis, C., Johnson, N.: The learning process. Read. Teach. 55(1), 86–94 (2001)MathSciNetGoogle Scholar
  52. Gould-Williams, J., Davies, F.: Using social exchange theory to predict the effects of HRM practice on employee outcomes. Public Manag. Rev. 7(1), 1–24 (2005)CrossRefGoogle Scholar
  53. Greve, H.: Organizational Learning from Performance Feedback: A Behavioral Perspective on Innovation and Change. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  54. Gurpinar, E.: Organizational forms in the knowledge economy: a comparative institutional analysis. J. Evol. Econ. 26(1), 501–518 (2016)CrossRefGoogle Scholar
  55. Hart, R., Hiltbrand, T.: Bridging the analytics skill gap with crowdsourcing. Bus. Intell. J. 19(2), 8–15 (2014)Google Scholar
  56. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond (2009)Google Scholar
  57. Hilbert, M.: Toward a synthesis of cognitive biases: how noisy information processing can bias human decision making. Psychol. Bull. 138(2), 211–237 (2012)CrossRefGoogle Scholar
  58. Hinnings, C.R., Thibault, L., Slack, T., Kikulis, L.M.: Values and organizational structure. Hum. Relat. 49(7), 885–916 (1996)CrossRefGoogle Scholar
  59. Huber, G.P.: Organizational learning: the contributing process and the literatures. Organ. Sci. 2(1), 88–115 (1991)CrossRefGoogle Scholar
  60. Hult, G.T.M., Nichols, E.L.: The organizational buyer behavior learning organization. Ind. Mark. Manage. 25(3), 197–207 (1996)CrossRefGoogle Scholar
  61. Jain, P., Sharma, P.: Behind Every Good Decision: How Anyone Can Use Business Analytics to Turn Data Into Profitable Insight. (Edited by L. Jayaraman). American Management Association, New York (2014)Google Scholar
  62. Jean-Marie, A., Tidball, M.: Adapting behaviors through a learning process. J. Econ. Behav. Organ. 60(3), 399–422 (2006)CrossRefGoogle Scholar
  63. Jeble, S., Dubey, R., Childe, S., Papadopoulos, T., Roubaud, D., Prakash, A.: Impact of big data and predictive analytics capability on supply chain sustainability. Int. J. Logist. Manag. 29(2), 513–538 (2018)CrossRefGoogle Scholar
  64. Kahin, B., Foray, D.: Advancing Knowledge and the Knowledge Economy. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  65. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York (2011)Google Scholar
  66. Karpov, Y., Bransford, J.: L.S. Vygotsky and the doctrine of empirical and theoretical learning. Educ. Psychol. 30(2), 61–66 (1995)CrossRefGoogle Scholar
  67. Katz, N.H., Sosa, K.J., Harriott, S.A.: Overt and covert group dynamics: an innovative approach for conflict resolution preparation. Conflict Resolut. Q. 33(3), 313–348 (2016)CrossRefGoogle Scholar
  68. Kesner, R., Martinez, J.: Neurobiology of Learning and Memory, 2nd edn. Academic Press, Amsterdam (2007)Google Scholar
  69. Kolb, B., Whishaw, I.: Brain plasticity and behavior. Annu. Rev. Psychol. 49(1), 43–64 (1998)CrossRefGoogle Scholar
  70. Kopsacheilis, O.: The role of information search and its influence on risk preferences. Theory Decis. Int. J. Multidiscip. Adv. Decis. Sci. 84(3), 311–339 (2018)MathSciNetzbMATHGoogle Scholar
  71. Krishnaswamy, V., Sundarraj, R.: Organizational implications of a comprehensive approach for cloud-storage sourcing. Inf. Syst. Front. J. Res. Innov. 19(1), 57–73 (2017)CrossRefGoogle Scholar
  72. Laux, C., Li, N., Seliger, C., Springer, J.: Impacting big data analytics in higher education through six sigma techniques. Int. J. Prod. Perform. Manag. 66(5), 662–679 (2017)CrossRefGoogle Scholar
  73. Leamnson, R.: Learning as biological brain change. Change 32(6), 34–40 (2000)CrossRefGoogle Scholar
  74. Li-Fen, L.: Knowledge-sharing in R&D departments: a social power and social theory perspective. Int. J. Hum. Resour. Manag. 19(10), 1881–1895 (2008)CrossRefGoogle Scholar
  75. Locke, E.: Construct validity vs. concept validity. Hum. Resour. Manag. Rev. 22(2), 146–148 (2012)CrossRefGoogle Scholar
  76. Lowe, R., Sandamirskaya, Y.: Learning and adaptation: neural and behavioural mechanisms behind behaviour change. Connect. Sci. 30(1), 1–4 (2018)CrossRefGoogle Scholar
  77. Lucas, C., Kline, T.: Understanding the influence of organizational culture and group dynamics on organizational change and learning. Learn. Organ. 15(3), 277–287 (2008)CrossRefGoogle Scholar
  78. Marcus, T., Shoham, S.: Knowledge assimilation by employees in learning organizations. Learn. Organ. 21(6), 350–368 (2014)CrossRefGoogle Scholar
  79. Markus, H.R., Kitayama, S.: Culture and the self: implications for cognition, emotion, and motivation. Psychol. Rev. 98(2), 224–253 (1991)CrossRefGoogle Scholar
  80. Marquardt, M.: Building the Learning Organization. McGraw-Hill, New York (1996)Google Scholar
  81. Martínez-León, M.I., Martínez-García, J.: The influence of organizational structure on organizational learning. Int. J. Manpower 32(5–6), 537–566 (2011)CrossRefGoogle Scholar
  82. Massa, R., Keston, R.: Minimum attention display techniques. Navigation 12(2), 153–163 (1965)CrossRefGoogle Scholar
  83. Mattox II, J.: Learning Analytics: Measurement Innovations to Support Employee Development. Kogan Page, Philadelphia (2016)Google Scholar
  84. Mazutis, D., Eckardt, A.: Sleepwalking into catastrophe: cognitive biases and corporate climate change inertia. Calif. Manag. Rev. 59(3), 74–108 (2017)CrossRefGoogle Scholar
  85. Merav, A.: Perceptual learning. Curr. Dir. Psychol. Sci. 8(4), 124–128 (1999)CrossRefGoogle Scholar
  86. Meyer, G., et al.: A machine learning approach to improving dynamic decision making. Inf. Syst. Res. 25(2), 239–263 (2014)CrossRefGoogle Scholar
  87. Miller, G.A.: The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 101(2), 343–352 (1956)CrossRefGoogle Scholar
  88. Mojzisch, A., Schulz-Hardt, S.: Knowing others’ preferences degrades the quality of group decisions. J. Pers. Soc. Psychol. 98(5), 794–808 (2010)CrossRefGoogle Scholar
  89. Moller, A.: The Malleable Brain: Benefits and Harm from Plasticity of the Brain. Nova Biomedical Books, New York (2009)Google Scholar
  90. Nadkarni, A., Mehra, R.: IDC FutureScape: Worldwide enterprise infrastructure 2019 predictions. IDC Report, November 2018Google Scholar
  91. Neuhauser, P.: Corporate Legends and Lore: The Power of Storytelling as a Management Tool. Peg G. Neuhauser, Austin (1998)Google Scholar
  92. Neumayer, E., Plümper, T.: Robustness Tests for Quantitative Research. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  93. Popper, M., Lipshitz, R.: Organizational learning mechanisms: a structural and cultural approach to organizational learning. J. Appl. Behav. Sci. 31(2), 181–196 (1998)Google Scholar
  94. Popper, M., Lipshitz, R.: Organizational learning: mechanisms, culture, and feasibility. Manag. Learn. 31(2), 181–196 (2000)CrossRefGoogle Scholar
  95. Rainbird, H., Fuller, A., Munro, A.: Workplace Learning in Context. Routledge, London (2004)Google Scholar
  96. Ranyard, R., Crozier, W., Svenson, O.: Decision Making: Cognitive Models and Explanations. Routledge, London (1997)Google Scholar
  97. Rasmussen, P., Nielsen, P.: Knowledge management in the firm: Concepts and issues. Int. J. Manpower 32(5/6), 479–493 (2011)CrossRefGoogle Scholar
  98. Rebelo, T.M., Gomes, A.D.: Organizational learning and the learning organization: reviewing evolution for prospecting the future. Learn. Organ. 15(4), 294–308 (2008)CrossRefGoogle Scholar
  99. Rozas, J.: Biased information and effort. Econ. Inq. 50(2), 484–501 (2012)CrossRefGoogle Scholar
  100. Russell, J., Hawthorne, J., Buchak, L.: Groupthink. Philos. Stud. 172(5), 1287–1309 (2015)MathSciNetCrossRefGoogle Scholar
  101. Salvador, R., Sadri, G.: The biology of decision-making. Ind. Manag. Jan/Feb, 12–17 (2018)Google Scholar
  102. Savory, A., Butterfield, J.: Holistic Management: A New Framework for Decision Making, 2nd edn. Island Press, Washington, D.C. (1999)Google Scholar
  103. Schafer, M., Crichlow, S.: Antecedents of groupthink: a quantitative study. J. Conflict Resol. 40(3), 415–435 (1996)CrossRefGoogle Scholar
  104. Schein, E.H.: On dialogue, culture, and organizational learning. Organ. Dyn. 22, 40–51 (1993)CrossRefGoogle Scholar
  105. Schreyogg, G., Sydow, J.: Organizing for fluidity? Dilemmas of new organizational forms. Organ. Sci. 21(6), 1251–1262 (2010)CrossRefGoogle Scholar
  106. Sense, A.: Conceptions of learning and managing the flow of knowledge in the project-based environment. Int. J. Manag. Proj. Bus. 1(1), 33–48 (2008)CrossRefGoogle Scholar
  107. Sessa, V.I., London, M.: Interventions to stimulate group learning in organizations. J. Manag. Dev. 27(6), 554–573 (2008)CrossRefGoogle Scholar
  108. Shandilya, S. (ed.): Advances in Machine Learning Research. Novinka, New York (2014)Google Scholar
  109. Shi, Z.: Advanced Artificial Intelligence. World Scientific, Singapore (2011)zbMATHCrossRefGoogle Scholar
  110. Sinha, S.: Making Big Data Work for Your Business: A Guide to Effective Big Data Analytics. Impackt Publishing, Birmingham (2014)Google Scholar
  111. Skeel Jr., D.: Icarus in the Boardroom: The Fundamental Flaws in Corporate America and Where They Came From. Oxford University Press, Oxford (2005)Google Scholar
  112. Subedi, D.: Signal and noise: why so many predictions fail – but some don’t. Compet. Rev. Int. Bus. J. 23(4–5), 426–430 (2013)Google Scholar
  113. Suykens, J.: Advances in Learning Theory: Methods, Models, and Applications. NATO Science Series, Series III: Computer and Systems Sciences, vol. 190. IOS Press, Amsterdam (2003)Google Scholar
  114. Stanley, J.D.: Dissent in organizations. Acad. Manag. Rev. 6(1), 13–19 (1981)CrossRefGoogle Scholar
  115. Stark, L., Tierney, M.: Lockbox: mobility, privacy and values in cloud storage. Ethics Inf. Technol. 16(1), 1–13 (2014)CrossRefGoogle Scholar
  116. Szatkowski, M., Rosiak, M.: Substantiality and Causality. De Gruyter, Berlin (2014)CrossRefGoogle Scholar
  117. Templeton, G.F., Schmidt, M.B., Taylor, G.S.: Managing the diffusion of organizational learning behavior. Inf. Syst. Front. 11(2), 189–200 (2009)CrossRefGoogle Scholar
  118. Thomas, N., Vohra, N.: Three debates in organizational learning: what every manager should know. Dev. Learn. Organ. Int. J. 29(3), 3–6 (2015)CrossRefGoogle Scholar
  119. Tuckman, B.W.: Conducting Educational Research, 3rd edn. Harcourt Brace Jovanovich, San Diego (1988)Google Scholar
  120. Tupper, C.: Data Architecture: From Zen to Reality. Morgan Kaufmann, Amsterdam (2011)Google Scholar
  121. Usuelli, M.: R Machine Learning Essentials: Gain Quick Access to the Machine Learning Concepts and Practical Applications Using the R Development Environment. Packt Publishing, Birmingham (2014)Google Scholar
  122. Van Dam, N.: Inside the learning brain. T + D 67(4), 30–35 (2013)Google Scholar
  123. Van Swol, L.: Perceived importance of information: the effects of mentioning information, shared information bias, ownership bias, reiteration, and confirmation bias. Group Process. Intergroup Relat. 10(2), 239–256 (2007)CrossRefGoogle Scholar
  124. Wang, Y.L., Ellinger, A.D.: Organizational learning: perception of external environment and innovation performance. Int. J. Manpower 32(5/6), 512–536 (2011)CrossRefGoogle Scholar
  125. Wastell, D.G.: Learning dysfunctions in information systems development: overcoming the social defences with transitional objects. MIS Q. 23, 581–600 (1999)CrossRefGoogle Scholar
  126. Wichert, A.: Principles of Quantum Artificial Intelligence. World Scientific, Hackensack (2014)zbMATHGoogle Scholar
  127. Wiggins, B.: Effective Document and Data Management: Unlocking Corporate Content, 3rd edn. Gower, Farnham (2012)Google Scholar
  128. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)Google Scholar
  129. Wood, R., Beckmann, J., Birney, D.: Simulations, learning and real world capabilities. Educ. Train. 51(5/6), 491–510 (2009)CrossRefGoogle Scholar
  130. Woodward, J.: Data, phenomena, signal, and noise. Philos. Sci. 77(5), 792–803 (2010)CrossRefGoogle Scholar
  131. Woungang, I., Misra, S., Misra, S.: Selected Topics in Information and Coding Theory. World Scientific, Singapore (2010)zbMATHCrossRefGoogle Scholar
  132. Wright, S., Schultz, A.: The rising tide of artificial intelligence and business automation: developing an ethical framework. Bus. Horiz. 61(6), 823–832 (2018)CrossRefGoogle Scholar
  133. Yanow, D.: Seeing organizational learning: a “cultural” view. Organization 7, 247–268 (2000)CrossRefGoogle Scholar
  134. Yates, J.F., de Oliveira, S.: Culture and decision making. Organ. Behav. Hum. Decis. Process. 136, 106–118 (2016)CrossRefGoogle Scholar
  135. Zhang, W.: Computational Ecology: Artificial Neural Networks and Their Applications. World Scientific, Singapore (2010)zbMATHCrossRefGoogle Scholar
  136. Zull, J.: The Art of Changing the Brain: Enriching Teaching by Exploring the Biology of Learning. Stylus Publishing, Sterling (2002)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.Cambridge CollegeBostonUSA

Personalised recommendations