Advertisement

Parameterized Analysis of Art Gallery and Terrain Guarding

  • Akanksha Agrawal
  • Meirav ZehaviEmail author
Conference paper
  • 81 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12159)

Abstract

The purpose of this invited talk is threefold: provide a brief introduction to both Parameterized Analysis and algorithmic research of visibility problems, and to address a few known results in the intersection. In the first part of the talk, we will discuss basic concepts and definitions in Parameterized Analysis as well as the philosophy behind the field. In the second and third parts of the talk, we will survey some results about the Art Gallery and Terrain Guarding problems, which have, so far, received only little attention from the viewpoint of Parameterized Analysis. Moreover, we will briefly overview a few of the known positive results on the parameterized complexity of these problems.

Keywords

Parameterized algorithms Parameterized complexity Art gallery Terrain guarding 

References

  1. 1.
    Abello, J., Egecioglu, O., Kumar, K.: Visibility graphs of staircase polygons and the weak bruhat order I: from visibility graphs to maximal chains. Discrete Comput. Geom. 14(3), 331–358 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abrahamsen, M., Adamaszek, A., Miltzow, T.: Irrational guards are sometimes needed. In: 33rd International Symposium on Computational Geometry (SoCG), pp. 3:1–3:15 (2017)Google Scholar
  3. 3.
    Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R}\)-complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 65–73 (2018)Google Scholar
  4. 4.
    Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic aspects. Ph.D. thesis, The Johns Hopkins University, Baltimore, Maryland (1986)Google Scholar
  5. 5.
    Agrawal, A., Knudsen, K., Daniel Lokshtanov, S.S., Zehavi, M.: The parameterized complexity of guarding almost convex polygons. In: 36rd International Symposium on Computational Geometry (SoCG) (2020, to appear)Google Scholar
  6. 6.
    Agrawal, A., Kolay, S., Zehavi, M.: Multivariate analysis for guarding terrains. In: Manuscript. p. TBA (2020)Google Scholar
  7. 7.
    Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for terrain guarding. ACM Trans. Algorithms 14(2), 25:1–25:20 (2018)Google Scholar
  8. 8.
    Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into star-shaped polygons. Pattern Recogn. 13(6), 395–398 (1981)MathSciNetGoogle Scholar
  9. 9.
    Basu, S., Pollack, R., Roy, M.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5d terrain guarding. SICOMP 36(6), 1631–1647 (2007)Google Scholar
  11. 11.
    Bhattacharya, P., Ghosh, S.K., Pal, S.P.: Constant approximation algorithms for guarding simple polygons using vertex guards. CoRR/arXiv abs/1712.05492 (2017)Google Scholar
  12. 12.
    Bhattacharya, P., Ghosh, S.K., Roy, B.: Approximability of guarding weak visibility polygons. Discrete Appl. Math. 228, 109–129 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bonnet, É., Giannopoulos, P.: Orthogonal terrain guarding is NP-complete. J. Comput. Geom. 10(2), 21–44 (2019)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bonnet, É., Miltzow, T.: Parameterized hardness of art gallery problems. In: Proceedings of the 24th Annual European Symposium on Algorithms (ESA), pp. 19:1–19:17 (2016)Google Scholar
  15. 15.
    Bonnet, É., Miltzow, T.: An approximation algorithm for the art gallery problem. In: Proceedings of the 33rd International Symposium on Computational Geometry (SoCG), pp. 20:1–20:15 (2017)Google Scholar
  16. 16.
    Borrmann, D., et al.: Point guards and point clouds: solving general art gallery problems. In: Symposium on Computational Geometry (SoCG), pp. 347–348 (2013)Google Scholar
  17. 17.
    Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and monotone chains. In: CCCG, pp. 133–138 (1995)Google Scholar
  19. 19.
    Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18(1), 39–741 (1975)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Dehne, F., Sack, J.-R., Santoro, N., Whitesides, S. (eds.) WADS 1993. LNCS, vol. 709, pp. 246–252. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57155-8_252Google Scholar
  22. 22.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimizing vertex guards on art galleries. Int. Trans. Oper. Res. 18(4), 425–448 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-21275-3
  24. 24.
    Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial time O(logn)-approximation algorithm for art gallery problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73951-7_15Google Scholar
  25. 25.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-1-4612-0515-9
  26. 26.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-1-4471-5559-1
  27. 27.
    Durocher, S., Li, P.C., Mehrabi, S.: Guarding orthogonal terrains. In: Proceedings of the 27th Canadian Conference on Computational Geometry, CCCG (2015)Google Scholar
  28. 28.
    Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100(6), 238–245 (2006)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability of some art gallery problems. In: Proceedings of the 10th Canadian Conference on Computational Geometry (CCCG) (1998)Google Scholar
  30. 30.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Elbassioni, M.K., Krohn, E., Matijevic, D., Mestre, J., Severdija, D.: Improved approximations for guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–463 (2011)Google Scholar
  32. 32.
    Evans, W., Saeedi, N.: On characterizing terrain visibility graphs. J. Comput. Geom. 6(1), 108–141 (2015)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Fellows, M.R.: The lost continent of polynomial time: preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006).  https://doi.org/10.1007/11847250_25zbMATHGoogle Scholar
  34. 34.
    Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory Ser. B 24(3), 374 (1978)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-X
  36. 36.
    Fomin, F., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2018)Google Scholar
  37. 37.
    Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain guarding problem: discretization, optimal solutions, and PTAS. J. Comput. Geom. 7(1), 256–284 (2016)Google Scholar
  38. 38.
    Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Canadian Information Processing Society Congress, pp. 429–434 (1987)Google Scholar
  39. 39.
    Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)Google Scholar
  40. 40.
    Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Discrete Appl. Math. 158(6), 718–722 (2010)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, segments, and polygons. ACM Comput. Surv. 46(2), 22:1–22:29 (2013)Google Scholar
  42. 42.
    Giannopoulos, P.: Open problems: guarding problems. In: Lorentz Workshop on Fixed-Parameter Computational Geometry, Leiden, the Netherlands, p. 12 (2016)Google Scholar
  43. 43.
    Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local search. J. Comput. Geom. 5(1), 168–178 (2014)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. 47(1), 61–74 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Kalai, G., Matoušek, J.: Guarding galleries where every point sees a large area. Israel J. Math. 101(1), 125–139 (1997)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Katz, M.J.: A PTAS for vertex guarding weakly-visible polygons - an extended abstract. CoRR abs/1803.02160 (2018)Google Scholar
  47. 47.
    Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comput. Geom. 39(3), 219–228 (2008)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Khodakarami, F., Didehvar, F., Mohades, A.: A fixed-parameter algorithm for guarding 1.5D terrains. Theor. Comput. Sci. 595, 130–142 (2015)Google Scholar
  49. 49.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_58Google Scholar
  50. 50.
    King, J., Krohn, E.: Terrain guarding is NP-hard. SICOMP 40(5), 1316–1339 (2011)MathSciNetzbMATHGoogle Scholar
  51. 51.
    King, J.: Fast vertex guarding for polygons with and without holes. Comput. Geom. 46(3), 219–231 (2013)MathSciNetzbMATHGoogle Scholar
  52. 52.
    King, J., Kirkpatrick, D.G.: Improved approximation for guarding simple galleries from the perimeter. Discrete Comput. Geom. 46(2), 252–269 (2011)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kirkpatrick, D.G.: An \(O(\log \log \text{ OPT })\)-approximation algorithm for multi-guarding galleries. Discrete Comput. Geom. 53(2), 327–343 (2015)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Kooshesh, A.A., Moret, B.M.E.: Three-coloring the vertices of a triangulated simple polygon. Pattern Recogn. 25(4), 443 (1992)Google Scholar
  55. 55.
    Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. Algorithmica 66(3), 564–594 (2013)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Lyu, Y., Üngör, A.: A fast 2-approximation algorithm for guarding orthogonal terrains. In: Proceedings of the 28th Canadian Conference on Computational Geometry, CCCG. pp. 161–167 (2016)Google Scholar
  58. 58.
    Marx, D.: What’s next? Future directions in parameterized complexity. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30891-8_20Google Scholar
  59. 59.
    Mehrabi, S.: Guarding the vertices of an orthogonal terrain using vertex guards. arXiv:1512.08292 (2015)
  60. 60.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)Google Scholar
  61. 61.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 17–32 (2010)Google Scholar
  62. 62.
    O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  63. 63.
    O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–189 (1983)MathSciNetzbMATHGoogle Scholar
  64. 64.
    de Rezende, P.J., de Souza, C.C., Friedrichs, S., Hemmer, M., Kröller, A., Tozoni, D.C.: Engineering art galleries. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 379–417. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49487-6_12Google Scholar
  65. 65.
    van Rooij, I., Blokpoel, M., Kwisthout, J., Wareham, T.: Cognition and Intractability: A Guide to Classical and Parameterized Complexity Analysis. Cambridge University Press, Cambridge (2019)Google Scholar
  66. 66.
    Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Q. 41(2), 261–267 (1995)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Shermer, T.C.: Recent results in art galleries (geometry). Proc. IEEE 80(9), 1384–1399 (1992)Google Scholar
  68. 68.
    Urrutia, J.: Art gallery and illumination problems. Handb. Comput. Geom. 1(1), 973–1027 (2000)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104(1), 1–16 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ben-Gurion University of the NegevBeershebaIsrael

Personalised recommendations