Advertisement

Computational Hardness of Multidimensional Subtraction Games

  • Vladimir Gurvich
  • Mikhail VyalyiEmail author
Conference paper
  • 65 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12159)

Abstract

We study the algorithmic complexity of solving subtraction games in a fixed dimension with a finite difference set. We prove that there exists a game in this class such that solving the game is \({\mathbf {EXP}}\)-complete and requires time \(2^{\varOmega (n)}\), where n is the input size. This bound is optimal up to a polynomial speed-up.

The results are based on the construction introduced by Larsson and Wästlund. It relates subtraction games and cellular automata.

Keywords

Subtraction games Cellular automata Computational hardness 

Notes

Acknowledgment

The authors are grateful to the anonymous referee for several helpful remarks improving both, the results and their presentation.

References

  1. 1.
    Albert, M., Nowakowski, R., Wolfe, D.: Lessons in Play: An Introduction to Combinatorial Game Theory. Taylor & Francis, Abington (2007)CrossRefGoogle Scholar
  2. 2.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 1–4. A.K. Peters, Natick (2001–2004)Google Scholar
  3. 3.
    Boros, E., Gurvich, V., Oudalov, V.: A polynomial algorithm for a two parameter extension of Wythoff NIM based on the Perron-Frobenius theory. Int J. Game Theory 42(4), 891–915 (2013).  https://doi.org/10.1007/s00182-012-0338-6MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Tetris hypergraphs and combinations of impartial games. CoRR abs/1701.02819 (2017). http://arxiv.org/abs/1701.02819
  5. 5.
    Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: On the Sprague-Grundy function of exact \(k\)-nim. Discrete Appl. Math. 239, 1–14 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function of matroids and related hypergraphs. Theor. Comput. Sci. 799, 40–58 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function of symmetric hypergraphs. J. Comb. Theory Ser. A 165, 176–186 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 2nd Ser. 3, 35–39 (1901–1902)Google Scholar
  9. 9.
    Conway, J.H.: On Numbers and Games. Academic Press, London, New York, San Francisco (1976)Google Scholar
  10. 10.
    Demaine, E.D., Hearn, R.A.: Playing games with algorithms: algorithmic combinatorial game theory. CoRR abs/cs/0106019v2 (2008). http://arxiv.org/abs/cs/0106019v2
  11. 11.
    Duchêne, E., Rigo, M.: Invariant games. Theor. Comput. Sci. 411, 3169–3180 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fraenkel, A.: How to beat your Wythoff games’ opponent on three fronts. Am. Math. Mon. 89, 353–361 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fraenkel, A.: Wythoff games, continued fractions, cedar trees and Fibonacci searches. Theor. Comput. Sci. 29, 49–73 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golomb, S.W.: A mathematical investigation of games of “take-away”. J. Comb. Theory 1(4), 443–458 (1966)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grundy, P.M., Smith, C.: Disjunctive games with the last player losing. Proc. Camb. Philos. Soc. 52, 527–533 (1956)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gurvich, V., Heubach, S., Ho, N.B., Chikin, N.: Slow \(k\)-nim integers. Electron. J. Comb. Number Theory 20, 1–19 (2020)Google Scholar
  17. 17.
    Gurvich, V., Ho, N.B.: Slow \(k\)-nim. RUTCOR Research Report RRR-03-2015 (2015)Google Scholar
  18. 18.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)zbMATHGoogle Scholar
  19. 19.
    Jenkyns, T.A., Mayberry, J.P.: The skeletion of an impartial game and the Nim-function of Moore’s Nim\({}_k\). Int J. Game Theory 9, 51–63 (1980).  https://doi.org/10.1007/BF01784796CrossRefzbMATHGoogle Scholar
  20. 20.
    Larsson, U., Wästlund, W.: From heaps of matches to the limits of computability. Electron. J. Comb. 20(3), #P41 (2013)Google Scholar
  21. 21.
    Moore, E.: A generalization of the game called Nim. Ann. Math. Second Ser. 11(3), 93–94 (1910)MathSciNetCrossRefGoogle Scholar
  22. 22.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  23. 23.
    Shaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16, 185–225 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2013)zbMATHGoogle Scholar
  25. 25.
    Wythoff, W.: A modification of the game of Nim. Nieuw Archief voor Wiskunde 7, 199–202 (1907)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Dorodnicyn Computing Centre, FRC CSC RASMoscowRussia
  4. 4.Rutgers UniversityNew BrunswickUSA

Personalised recommendations