Advertisement

The Continuous Hotelling Pure Location Game with Elastic Demand Revisited

  • Pierre von MoucheEmail author
Conference paper
  • 113 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

The Hotelling pure location game has been revisited. It is assumed that there are two identical players, strategy sets are one-dimensional, and demand as a function of distance is constant or strictly decreasing. Besides qualitative properties of conditional payoff functions, attention is given to the structure of the equilibrium set, best-response correspondences and the existence of potentials.

Keywords

Hotelling game Potential game Pure Nash equilibrium existence Principle of Minimum Differentiation 

References

  1. 1.
    Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)CrossRefGoogle Scholar
  2. 2.
    Smithies, A.: Optimum location in spatial competition. J. Polit. Econ. 44, 423–439 (1941)CrossRefGoogle Scholar
  3. 3.
    Boulding, K.: Economics Analysis: Microeconomics. Harper & Row, New York (1955)Google Scholar
  4. 4.
    Davis, O., Hinich, M.J., Ordeshook, P.C.: An expository development of a mathematical model of the electoral process. Am. Polit. Sci. Rev. 44, 426–448 (1970)CrossRefGoogle Scholar
  5. 5.
    Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42(1), 27–49 (1975)CrossRefGoogle Scholar
  6. 6.
    Graitson, D.: Spatial competition à la hotelling: a selective survey. J. Ind. Econ. 31(1/2), 11–25 (1982)CrossRefGoogle Scholar
  7. 7.
    Anderson, S.P., de Palma, A., Thisse, J.-F.: Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge (1992)CrossRefGoogle Scholar
  8. 8.
    Reny, P.: On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67, 1029–1056 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mazalov, V., Sakaguchi, M.: Location game on the plain. Int. Game Theory Rev. 5(1), 13–25 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    von Mouche, P.H.M., Quartieri, F.: Cournot equilibrium uniqueness via demi-concavity. Optimization 67(4), 41–455 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Iimura, T.: Private Communication. Tokyo Metropolitan University, Tokyo, Japan (2017) Google Scholar
  12. 12.
    Iimura, T., von Mouche, P.H.M., Watanabe, T.: Best-response potential for hotelling pure location games. Econ. Lett. 160, 73–77 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    von Mouche, P., Pijnappel, W.: The hotelling bi-matrix game. Optim. Lett. 12(1), 187–202 (2015).  https://doi.org/10.1007/s11590-015-0964-6MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Iimura, T., von Mouche, P.H.M.: Discrete hotelling pure location games: potentials and equilibria. Working Paper, Wageningen Universiteit (2020)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Wageningen UniversiteitWageningenThe Netherlands

Personalised recommendations