Advertisement

Smart Farming: Intelligent Management Approach for Crop Inspection and Evaluation Employing Unmanned Aerial Vehicles

  • Carlos Quiterio Gómez Muñoz
  • Christian Paredes Alvarez
  • Fausto Pedro Garcia MarquezEmail author
Conference paper
  • 8 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1191)

Abstract

This work presents an unmanned aerial vehicle management platform encompassed in the concept of smart farming. Automates inspections of different \(\text {crops}\) and monitors the status of the plantation is done by IoT, analyzing an area on an online map that provides air and weather restrictions. Intelligent route management algorithms are employed to generate the optimal inspection route and waypoints, maximizing the multispectral images capture. These multispectral images can be subsequently processed according to algorithms based on phytosanitary index formulas and regressions obtained with artificial neural networks. Reports are generated with analysis of the results by this approach, for example: optimal collection time, water stress, maturity index, etc.

Keywords

Smart farming Non-destructive tests Crop evaluation Unmanned aerial vehicles Route management Multispectral images 

Notes

Acknowledgements

The work reported herewith has been financially by the Dirección General de Universidades, Investigación e Innovación of Castilla-La Mancha, under Research Grant (Ref.: SBPLY/19/180501/000102).

References

  1. 1.
    Borlu, Y., Glenna, L.: Environmental concern in a capitalist economy: climate change perception among US specialty-crop producers. Organ. Environ., 1086026618897545 (2020)Google Scholar
  2. 2.
    Chopde, N.R., Nichat, M.K.: Landmark based shortest path detection by using A* and Haversine formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302 (2013)Google Scholar
  3. 3.
    De Janvry, A., Sadoulet, E.: How experimental research in agriculture has gone from lab to field. World Dev. 127(104), 782 (2020)Google Scholar
  4. 4.
    Herraiz, Á.H., Marugán, A.P.: Remotely operated vehicle applications. In: Non-destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets, pp. 119–132 (2015)Google Scholar
  5. 5.
    Klerkx, L., Rose, D.: Dealing with the game-changing technologies of agriculture 4.0: how do we manage diversity and responsibility in food system transition pathways? Glob. Food. Secur.-Agric. 24, 100–347 (2020)Google Scholar
  6. 6.
    Lee, S.: Role of social and solidarity economy in localizing the sustainable development goals. Int. J. Sustain. Devel. World Ecol. 27(1), 65–71 (2020)CrossRefGoogle Scholar
  7. 7.
    Ma, T., Li, P., Ma, T.: A three-dimensional cartesian mesh generation algorithm based on the GPU parallel ray casting method. Appl. Sci. 10(1), 58 (2020)CrossRefGoogle Scholar
  8. 8.
    Márquez, F.P.G.: An approach to remote condition monitoring systems management. In: IET International Conference on Railway Condition Monitoring (2006)Google Scholar
  9. 9.
    Márquez, F.P.G., Muñoz, J.M.C.: A pattern recognition and data analysis method for maintenance management. Int. J. Syst. Sci. 43(6), 1014–1028 (2012)CrossRefGoogle Scholar
  10. 10.
    Márquez, F.P.G., Pardo, I.P.G.: Principal component analysis applied to filtered signals for maintenance management. Qual. Reliab. Eng. Int. 26(6), 523–527 (2010)CrossRefGoogle Scholar
  11. 11.
    Márquez, F.P.G., Pedregal, D.J.: Applied RCM 2 algorithms based on statistical methods. Int. J. Autom. Comput. 4(2), 109–116 (2007)CrossRefGoogle Scholar
  12. 12.
    Márquez, F.P.G., Ramírez, I.S.: Condition monitoring system for solar power plants with radiometric and thermographic sensors embedded in unmanned aerial vehicles. Measurement 139, 152–162 (2019)CrossRefGoogle Scholar
  13. 13.
    Márquez, F.P.G., Pardo, I.P.G., Nieto, M.R.M.: Competitiveness based on logistic management: a real case study. Ann. Oper. Res. 233(1), 157–169 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marugán, A.P., Márquez, F.P.G.: Advanced analytics for detection and diagnosis of false alarms and faults: a real case study. Wind Energy 22(11), 1622–1635 (2019)CrossRefGoogle Scholar
  15. 15.
    Marugán, A.P., Márquez, F.P.G., Lev, B.: Optimal decision-making via binary decision diagrams for investments under a risky environment. Int. J. Prod. Res. 55(18), 5271–5286 (2017)CrossRefGoogle Scholar
  16. 16.
    Moraleda, V.B., Marugán, A.P., Márquez, F.P.G.: Acoustic maintenance management employing unmanned aerial vehicles in renewable energies. In: International Conference on Management Science and Engineering Management, pp 969–981. Springer (2018)Google Scholar
  17. 17.
    Muñoz, C.Q.G., Gonzalo, A.P., et al.: Online fault detection in solar plants using a wireless radiometer in unmanned aerial vehicles. In: International Conference on Management Science and Engineering Management, pp. 1161–1174. Springer (2017)Google Scholar
  18. 18.
    Muñoz, C.Q.G., Jiménez, A.A., Márquez, F.P.G.: Wavelet transforms and pattern recognition on ultrasonic guides waves for frozen surface state diagnosis. Renew. Energy 116, 42–54 (2018)CrossRefGoogle Scholar
  19. 19.
    Pedregal, D.J., García, F.P., Roberts, C.: An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions. Ann. Oper. Res. 166(1), 109–124 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pliego, A., Márquez, F.P.G.: Big data and web intelligence: improving the efficiency on decision making process via BDD. In: Big Data: Concepts, Methodologies, Tools, and Applications, pp. 229–246. IGI Global (2016)Google Scholar
  21. 21.
    Ramírez, I.S., Marugán, A.P., Márquez, F.P.G.: Remotely piloted aircraft system and engineering management: a real case study. In: International Conference on Management Science and Engineering Management, pp. 1173–1185. Springer (2018)Google Scholar
  22. 22.
    Ramírez, I.S., Sánchez, P.J.B., et al.: Autonomous underwater vehicles inspection management: optimization of field of view and measurement process. In: 13th International Conference on Industrial Engineering and Industrial Management, Servicio de Publicaciones de la Universidad de Oviedo (2019)Google Scholar
  23. 23.
    Segovia, I., Pliego, A., et al.: Optimal management of marine inspection with autonomous underwater vehicles. In: International Conference on Management Science and Engineering Management, pp. 760–771. Springer (2019)Google Scholar
  24. 24.
    Wu, W.Y.: Dominant point detection using adaptive bending value. Image Vis. Comput. 21(6), 517–525 (2003)CrossRefGoogle Scholar
  25. 25.
    Zaman, N., Seliaman, M.E., et al.: Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence. Information Science Reference, Pennsylvania (2015)CrossRefGoogle Scholar
  26. 26.
    Zheng, C., Li, L., et al.: Evolutionary route planner for unmanned air vehicles. IEEE Trans. Rob. 21(4), 609–620 (2005)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Carlos Quiterio Gómez Muñoz
    • 1
  • Christian Paredes Alvarez
    • 1
  • Fausto Pedro Garcia Marquez
    • 2
    Email author
  1. 1.Universidad Europea de MadridMadridSpain
  2. 2.Ingenium Research GroupCastilla-La Mancha UniversityCiudad RealSpain

Personalised recommendations