Advertisement

A Mathematical Model of Soil Fertility

  • Yasin RustamovEmail author
  • Tahir Gadjiev
  • Sheker Askerova
Conference paper
  • 27 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1190)

Abstract

In the paper the mathematical model for investigation of soil fertility is constructed. The model is based on differential equations (simple and delayed), which allow to estimate agrochemical parameters and the dynamics of the organic matter in the soil.

Keywords

Fertility Soil Agrochemical parameter Vegetation Differential equations Nonlinearity Open system Heterogeneity 

References

  1. 1.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, p. 320. Birkhäuser, Basel (2001)CrossRefGoogle Scholar
  2. 2.
    Chertov, O.: Theoretical approaches to modeling the dynamics of soil organic matter. Soil Sci. 8, 937–946 (2013)Google Scholar
  3. 3.
    Curry, R.: Dynamic simulations of plant growth, development of a model. Trans. ASAE 14(5), 945–949 (1971)CrossRefGoogle Scholar
  4. 4.
    Curry, R.B., Baker, C.H., Streeter, J.G.: SOYMOD I: a dynamic simulator of Soybean growth and development. Trans. ASAE 18(5), 0963–0968 (1975)CrossRefGoogle Scholar
  5. 5.
    Monsi, M., Saeki, I.: über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. J. Jpn. Bot. 14(1), 38–48 (1953)Google Scholar
  6. 6.
    Riznichenko, G.: Mathematical models in biophysics and ecology, p. 184 (2003)Google Scholar
  7. 7.
    Rustamov, T.G., Aliyev, S.: A mathematical models the optimal irragation under optimal water resources. Int. J. Mod. Trends Eng. Res. (IJMTER) 5(10), 1–7 (2018)Google Scholar
  8. 8.
    Ryzhova, I.: System analysis and mathematical modeling of processes in soils, p. 312. Tomsk State University (2007)Google Scholar
  9. 9.
    Ryzhova, I.: Problems and prospects of dynamics modeling organic matter of soils. Agro Chem. 12, 71–80 (2011)Google Scholar
  10. 10.
    Sauer, R.: Simulation model for grassland primary producer phenology and biomass dynamics, vol. 152, pp. 1–97 (1975)Google Scholar
  11. 11.
    Shein, E.: Soil physics course, Moscow, p. 432 (2005)Google Scholar
  12. 12.
    Smagin, A.: Organizational dynamics modeling soil, Moscow, p. 120 (2001)Google Scholar
  13. 13.
    Tooming, H.: Solar radiation and crop formation, p. 194 (1997)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yasin Rustamov
    • 1
    Email author
  • Tahir Gadjiev
    • 2
  • Sheker Askerova
    • 3
  1. 1.Institute of Control Systems, Institute of Mathematics and MechanicsBakuAzerbaijan
  2. 2.Institute of Mathematics and MechanicsBakuAzerbaijan
  3. 3.Ganja Agrarian UniversityGanjaAzerbaijan

Personalised recommendations